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Abstract |

Exciting new experiments in gra\./itational physics are among the preposed fu-
ture space science missi‘Ons around the world. Such future space science experiments
‘include gravita_tional wave observatories, which require extraordinarily precise instru-
ments for gravitational wave detection. In fact, future space-based gravita’;ional wave
ob‘se‘rvatories require the use of a drag free reference Sensor, which is several orders
~of magnitude more precise than any drag free satellite launched to date. With the
analysis methods and measurement techniques described in this werk‘, there is en_e less
challenge associated with achieving the high-precision drag-free satellite performance

levels required by gravitational wave observatories.

One disturbance critical to the dreg-free ‘perfobrmance is an acceleration from_the
mass attraction between the spacecraft and drag-free reference mass. A direct mea-
surement of the gravitational mass attraction force is not ea‘s'ily”performed.v His-
terically for drag-free satellite design, the gravitational ettracfion properties were
estimated by using idealized eqﬁations between a point mass and objects of fegular.
geometric shape with homogeneous density. Stringent requirements are theh placed
on the density distribution and fabrication tolerances for the drag—free reference mass

"and satellite components in order to ensure that the allocated gravitatienal mass
~attraction disturbance budget is not exceeded due to the associated uncertainty in
geometryv and mass properﬁies. Yet, the ‘uncertaint‘y associated with mass properties
and geometry generate an unacceptable uncertainty in the mass attraction calculation,
whichﬂmake it difficult to meet the demanding drag-free performance reqliirements
of future gravitational'Wave observatories. The density homogeneity and geometrical

tolerances required to meet the overall drag-free performance can easily force the use
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of special materials or maoufaeturin»g processes, which are impractical or not feasi’ble‘.‘

The focus of this research is therefore to develop the necessary equations for the =
gravitational mass attraction force and gradients between two general distributed
~ bodies. ‘Assuming the drag-free reference mass to be a single point mass object is
" no longer necessary for the gravitational attraction calculations. Furthermore, the
developed equations are coupled with physical measurements in order to eliminate
the mass attraction uncei‘tainty associated with mass properties. The mass attrac-
tion formula through a secoxid order expansion consists. of the measureble- quantities
of mass, mass center, and moment of inertia about the lmass' center. Thus, the grav-
itational self-attraction force on the drag free reference due to the satellite can be
indirectly measured. By incorporating physical measurements into the mass attrac-
tion calculation, the uncertainty in the density distribution as well as geometrical
variations due to the manufacturing process are included in the analys1s

For 1nd1rect grav1tational mass attraction measurements, the corresponding prop-
erties of mass, mass center, and moment of inertia must be precisely determined for
the proof inass and satellite components This work focuses on the: pre0181on mea-
surement of the moment of inertia for the drag—free test mass. Presented here is
the des1gn of a new moment of inertia measurement apparatus utiiizi_ng a,_ﬁve-Wire
" torsion pendulum design. The torsion pendulum’is utilized to measure the moment
- of inertia tensor for a prospective drag-free test mass geometry. The measurement
results presented indicate the prototype five-wire torsion has matched current state
of the art precision. With only minimal work to reduce laboratory environmental
distufbances, the ‘apparatus has the prospect of exceeding state of the art precision
by almost an order of magnitude. In addition, the apparatus is shown to be capable
of measuring the mass center offset from the geometric center to a level better than
typical measurement devices. Although the pendulum was not originally designed for
mass center measurements, ‘pvreliminary results indicate an apparatus with a similar

design may have the potential of achievirig state of the art precision.
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| Chapter 1
I’ntroduction

1.1 Drag-Free References and Applications |

. At the core of a drag-free satellite is a drag-free reference sensor, which is simply
a proof mass specifically designed in shapé' ahd materials for a particular purpose
or ,application. To bé useful, the proof mass must be shielded from all external
forces to form an inertial reference. The characteristics of an iﬁfér'tial referenée are
achieved by surrounding the proof mass with a satellite, coupled with a sophisticatéd |
control system. Environmental disturbances are absorbed by the satell-ite and are
counteracted with thrusters to keep the proof mass continuously cenfered within the
cavity at the core of the satellite. In essence, the satellite acts as a shield to protect
, the proof mass from all environmental disturbaﬁces, maintaining a disturbance free

environment for the proof mass.

There are a number applications or uses for a drag-free satellite [16]. For instance,
the inertial reference can be utilized as part of spacecraft navigation systems for pre-
dictable orbit determination, or even as part of sat_ellite formation flight cluster man- |
‘agement. In fact, the first drag-free satellite, Triad—l /DISCOS, was used to generate
predictable satellite orvbitls, which could then be used bj;/ the US Navy as a navigation
system [53]. In addition, there are a number of science experiments in g'eodesyr and

experimental gravitation. One application generating a great deal of enthusiasm is

1



9 : , , . CHAPTER 1. INTRODUCTION

Figure 1.1: Artist’s rendition of the Laser Interferometer Space Antenna, (LISA).
Future drag-free satellite mission to be used as a gravitational wave observatory.

that of a gravitational wave observatory. Gravity, as described by Einstein is a curva-
ture of space dnd time. Gravitational waves are ripples in épacetime, created by two
super-massive objects moving in space, such as black hole binaries, galactic binariés,v
and extreme mass ratio inspirals [44]. Although these waves have been predicted to
exist by Einstein’s theories, gravitational waves have yet to be detected directly and

proof of their existence has been limited to indirect observations.

Detection of gravitational waves has become in recent years a top science priority

for nations around the world. Not only is it important to verify fundamental physics

through the detection of gravitational waves, but a functional gravitational wave .

observatory can further the discovery of astrophysical objects and also provide insight
into the origins of the universe. Figure 1.1 shows for eXample, an artists rendition of

a joint ESA/ NASA space-based gravitational wave observatory known as the Laser



1.1. DRAG-FREE REFERENCES AND APPLICATIONS | 3

- Interferometer Space Antenna, (LISA).! LISA consists of three dragéfree satellites,
with the mission to detect gravitational waves and then use the detected signal to
look at the universe and it’s history as a new type of ‘telescope. Clearly the success
of LISA will open an’ exciting new frontier of science. LISA shall proVivde‘ for fhé
first time a direct observation of graVitational waves and proof of their existence.
Furthermore, graVitational wave astronomy. will enhance COnventionalvasfpronomy by
providing information about the emitting sources. The gravitational ‘_wa,vevs'ky, as
observed by LISA, contains potentially millions of galactic binaries. LISA will target,
for example, gravitational wave sources in the frequency band of 0.1 mHz to 0.1 Hz,
1nclud1ng sources such as massive black hole binaries and black hole mergers In
addition, fluctuations in the grav1tatlonal background radlatlon w111 further prov1de |

knowledge about the evolution of the early universe.

Grav1tat10nal wave detectlon relies on the underlylng drag-free satelhte technol—
ogy to form the science sensor. From gravitational wave physws a strain in the
spacetlme curvature occurs when a gravitational wave passes. Thus, if there are two
free—ﬂoatlng objects in space, a relative change in displacement will be observed due
to the passing of a gravitationé,l wave. Two drag‘-rfree references therefore form the es-
sential ‘éomponents for a gravitational detector. The difficulty.in detection, however,
lies with the magnitude of the gravitational strain and the requirement to ensure that
the frée—ﬂoatirlg proof mass has moved due to the passing of a gravitational wave and
not as a result of some other local disturbance. The gravitational strain is similar
in definition to.a mechanical strain or a change in length divided by the separatlon
dlstance AL/L. Since spacetlme is extremely stiff, the magnltude of the straln asso-
ciated with a gravitational wave is on the order of 1072 [44]. Thus, if the separation

| distance, L, is on the order of millions of kllometers the observed change in length,
- AL, will be on the order of plcometers The required amount of accuracy over such
a long distance is quite a challenging task. Furthermore, it is quite challenging to
ensure that the proof mass associated with the science sensor has not moved by a

small magnitude due to a force other than by the effects of a gravitational wave.

, More information on the LISA spacecraft and the mission objectives can be found in Refer-
ence (36).
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- The required drag-free performance to provide a completely inertial reference sen-
sor for grav1tat10nal wave detectlon is not a simple task. Environmental disturbances
can be on the order of 10~® g, and gravitational sensor missions often require design
accelerations of better than 10712 g [53]. For Triad-1/ DISCOS the Disturbance Com-
pensation System, DISCOS was designed to provide a dlsturbance-free environment
at the proof mass to an acceleration level of 107 g (1071° m/s?) [53] [22] Further-
more, for the LISA gravitational wave observatory, the dynamic stablhty must_be

‘achieved down to 0.1 mHz due to the frequency of the associated gravitational wave

- science sighal Even the most precise drag-free satellite launched to date, Gravity

- Probe B (GP B) would require a substantial increase in the drag—free performance

 level to achleve the requlrements dictated by future space—based grav1tatlonal wave

'observatorles In fact, next generation space—based grav1tat10nal wave observatories
" such as- LISA require the use of gravitational reference sensors, which are several
orders of magnltude more precise than any drag free satelhte launched to date. Fig-
* ure 1.2 shows for instance the drag—free performance requirement of LISA as compared
to GP-B over the target gravitational frequency range for LISA. As shown in the fig-
{ire on the vertical axis, the residual acceleration on the drag-free reference in the

- frequency band of interest is the key performance metric for a drag—freev satellite.

In order to increese the drag—free performance level for a drag-free _satellite; all of
the disturbances acting on the proof mass must be determined and characteriied. Al
though the satellite is designed to shield the pro‘of mass from external disturbances,
the pure existence of the satellite introduces internal disturbances. Disturbances
to the proof mass arise from numerous sources, includ.ing for example thermal varia- |
tion‘s, magnetic fields and gravitational mass attraction gradients. The total drag-free
performance is therefore a combination of all these extraneous accelerations; In ad--
dition, through engineering design decisiohs, the magnitude of one disturbance may
be traded for another in order to meet the overall drag-free performance requirement. -
For example, a material chosen to reduce the disturbance due to say magnetie ef-

fects may increase the disturbance due to gravitational mass attraction. By pfoper ‘
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Figure 1.2: Drag-free satellite performance comparison. Design goals for gravitational
wave observatories such as LISA require significant improvement over state of the art
drag-free performance technology. The frequency range depicted corresponds to the
gravitational wave frequency band targeted by LISA.

system-level design, all of the disturbances assdéiated with the satellite must be min-
imized. A number of individuals have attempted to characterize the expected leadlng
disturbance terms associated w1th demandlng drag-free performance missions such

as LISA [47], [56], [29], [28]. Indeed, the gravitational mass attraction force between
the satellite and the drag free reference mass has been identified as a contribution to
the disturbance budget. For LISA, the required mass attraction acceleration noise
level must be reduced to the challenging value of better than 5 x 10-16 m/s?-Hz!/? at
0.1 mHz [42]. The static value for the gradient of the mass attraction force is in addi-
tion a challenging requirement at 3 x 107®s72 or less, which is an order of magnitude
better than required for Triad-1/DISCOS [56], [53]. Only by designing the satellite .

as a perfect sphere with a uniform density distribution containing a hollow cavity at
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Figure 1.3: Artist’s rendition of Triad-1/DISCOS. DISCOS, the Disturbance Com-
pensation System, is at the middle of the satellite near the illustration center. Satellite
components not essential to the control system operation were placed at the ends of
two booms, as shown at the top left and bottom right of the illustration. Further
information on the configuration of Triad-1/DISCOS is found in Reference [13].

the center can the mass attraction force be completely eliminated. Clearly, such a
satellite design is impractical and therefore the mass attraction forces and gradients
must be determined at the proof mass due to the surrounding satellite.

The gravitational mass attraction between the drag-free reference mass and the
surrounding satellite is a dominant disturbance, which limits the overall drag-free
performance. Furthermore, the exact gravitational mass attraction properties for the
satellite are difficult to determine due to uncertainties in geometric fabrication toler-
ances, material density distributions and precise component location knowledge. For
Triad-1/DISCOS, the mass attraction was the principal potential source of distur-
bance to the proof mass [16]. The uncertainty associated with the mass attraction
disturbance for Triad-1/DISCOS was reduced by moving all the parts of the satellite
not essential to the control system to a location far from the drag-free reference as
shown in Figure 1.3. The satellite was manufactured in three parts and split between

two booms such that the majority of the mass was moved to distances several meters
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away frofn the drag-free satellite proof mass and control system. Three pieces were
necessa’ry’to maintain symmetry, such that the mass center of the satellite was near
the drag-free reference mass. Although the gravitational mass é,ttraction was still the
‘dominant contribution to the disturbance budget for Triad-1/DISCOS, the use of the
,booms' resulted in a satellite design, where the majority of _the satellite components

could be machined without special fabrication tolerances [53].

Although the design philosophy of sepérafing the drag-free reference mass from
the majority of the satellite aids in increasing the drag-free perfofmance, there is a
practical limit to_such'a design. Triad-1/DISCOS, for example, Waé on the order
of 8m in length with the two 3m long booms deployed [13]. Increasing the total
length of the‘ satellite to meet more stringent drag free‘performanée requirements
is therefore impractical. - Clearly;‘when poséibl‘e it is desired to move components
with a large contribution to the mass attraction disturbance budget to locations far
from the proof mass. Yét,, other contributions in a. dyna,mié, sense will exist with
the addition of booms, such as oscillatory ‘inotion due to differential thermal heating
and gravity gradient torques as well as the design trade associated with increased
mass and complex mechanisms. For gravitational wave observatories such as LISA, a |
satellite design utilizing booms is not. feasible. As a result, only additional precision
knowledge.’of the satellite component mass, geometry, and orientation/location can "~

further aid in reducing the mass attraction disturbance.

Throughout the history of drag-free satellite design, the theoretical contribution
to the mass attraction disturbance budget was determined by assuming idealized val-
ues for the density distribution and component géometr‘y. Although Triad-1/ DISCO'SV
avoided the requirement of special fabrication tolerances for the m‘ajofity of the satel-
lite, some critical compbnents did indeed require fabrication tolerarices or measure-
ments to the order of 0.0025mm [563]. Next generation gravitational wave observato-
ries such as LISA dictate an unprecedented dfag—free performance level, which in tufn
generates the requirement for even more strict fabrication tolerances. Satellite com-
ponents would require special machining processes and/ or materials with. stringent
requiréments on the density distribution in order to use the purely theoretical mass

“attraction computation procedure. In order to enable future .drag—free spé,ce science
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missions such as LISA, one turns to measurements in order to ihcrease the knowledge
of the gravitational mass attraction for the satellite. Unfortunately, it is difficult to
measure the grdvitational attraction directly and any such measurement would be
limited to a particular component configuration such as location and orientation. An
“alternate analysis method is therefore desired and the solution is presented in this

work.

1.3 Contributions and Outline

This work presents- contributions which may be groliped into two primary cate-
gories. First; contributions to the area of gravitational mass attraction are presented
in Part I. Secondly, contributions in the area of precie‘ivon‘massl property measurements
are covered in Part II. Thevcontributionsvin both parts of this Workbare interconnected.
" The combination of the contributions in Part I and Part IT corﬁpleteskt_he solution to
the mass attraction problem associated with high precision drag-free satellites ‘su'ch‘ -
as LISA. '

1.3.1 Gravitational Mass Attractioh

~ Motivated by the. gravitational mass attractioh issues associated with precision
drag-free satellites, this work presents an alferna,ti‘ve calculation approach for the mass
attraction disturbance to the drag-free reference. For the first time, a complete'closed |
form solution,te the mass attraction force and gradients between any two general -
shaped objects is presented (Chapter 3). Other solution methods typically require
one object to be a point mass in order to carry out the mass attraction calculatien. By
using the equations presented in this work, neither object needs to be represented as a
point mass in order to calculate the mass attraction properties. The mass attraction
equations presented utilize a multivariable vTa;ylor Series expansion to achieve the final
* form. Since Poisson in the 1800’s [46], a number of individuals have utilized a Taylor
Series expansion to calculate the mass attraction equations. Indeed, this work will

utilize a similar abproach for solving the gravitational attraction equatiens. Yet, to
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the authors knowledge no solution before has listed the terms beyond a second order
expansion for the case of two general shaped bodies and are therefore not complete
solutions. The work’ presented in in Chapter 3 does not limit the analy31s to p01nt '

mass objects and may be represented to the desired expansion order.

- Whenever performlng»mass attraction .analyses, the calculation is only as good
as the knowiedge of the mass properties. The model, which typically assumes ideal
mass properties is therefore only an approximation of the true phys1cal system The
‘theory presented in Chapter 3 also establishes the 1ns1ght necessary for 1ncorporat1ng
phys1cally measurable quantities into the analysis. It will be shown that through a
* second order expans1on the grav1tational attraction equations consist of the measur-
able terms of mass, mass center and the moment of inertia tensor. Thus, the method
described in this work incorporates physically measurable mass properties into the
analysis, such that the calculation is an indirect measurement of the gravitational
attraction properties through the second order. Should a’.higher order expansion be |
desired, the remaining terms in the expansron are of third order and higher and only
: require modest geometry and- density distribution knowledge compared to a p01nt
mass finite element solution. Thus, the density distribution and geometry does »not»
need to be known as acciira_tely as required for common point mass finite element
‘solution methods. By incorporating physical measurements into the caloulation; one
eliminates uncertainties due to ideal assumptions involving density inhomogeneities
‘ and geometrical variations. The mass attraction analysis is no longer a theoretical
model of the attraction properties for the system, but rather an indirect measurement

of the actual physical system through the second order.

The equations developed in Part I are significant for a number of other reasons
which may not be immediately apparent. The developed equations. allow for the
satellite designer to perform indirect measurements of the mass attraction force and
gradients as well as to develop initial multiphysics simulations/ models including mass
attraction effects. Also developed in Chapter 3 are the necessary equations for incor-
porating tetrahedron finite elements into mass attraction cornputations. This devel-
oped method therefore allows for an early design using software models and expected

idealized mass properties. As the physical hardware becomes available, measured
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valﬁes for the mass properties can then be used in the analysis to refine the mass;
attraetion properties. Once the measured parameters become available, a full scale
finite element analysis need not heeessarily be performed again in order to obtain the
mass attraction properties. Simply by tabule,ting mass properties of each component
or s_ubsystem, the attraction properties can be re-calculated easily for any fedesigny

. resulting in a component location or orientation change.

1.3.2 Precision Mass Property Meas_u’temehts R

~ Part 11 of this work focuses on the measurement of the necessa-ry mass properties
for a mass attraction calculation. The theory for determining mass property mea-
surements by means of a torsion pendulum is detailed in Chapter 4. 'The desigli of a
‘novel five-wire torsion pendulum measurement. apparatus for precision mass property

measurements is then described in Chapter 5.

- The five-wire des1gn is vastly dlfferent from the common single wire or trifilar
torsion pendulum design often used for science experiments. Such pendulum designs
are desired to be very sensitive to extraneous forces and as a result have very low
damplng coefficients with the torsional quality factor ,Q = 1 /2¢, ranging from 10% to
~ 10° or higher [6]. "The five-wire design has a much higher stiffness, with the quahtyv
factor, Q, of 3000 or less such that the pendulum is not highly sensitive to external
- forces. The goal of the five-wire torsion pendulum design is rather to geherate a pure
rotation about a desired axis with translational degrees of freedom spectrally shifted
from the rotation fi‘equency. This new five-Wire pendultlm design is carried through
the initial prototype stage and is described in detail in Chapter 5. The apparatus is
* then used to measure the mass properties of ‘mass center location and the moment
of inertia tensor (Chapter 6). Although the apparatu’s is still an initial .prototype
design, the results from the five-wire torsion pendulum match state of the art moment
of inertia measurement levels. The pendulum error sources and limitations for the
initial design are fully characterized in Chapter 7. With minimal work to suppress
laboratory environmental disturbances, the five-wire penduhim is expected to exceed

state of the art moment of inertia measurements by almost an order of magnitude.
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The five-wire -torsion pendulum was primarily designed for measuring moments
of inertia. Still, the pendulum performance motivated the application of the pendu-
lum to mass center location measurements. As show in Chapter 6, the pendulum
' demonstrates the ability to determine the mass center location to levels: better than |
typical mass center measurement devices. Again, the original pendulum de31gn was
not originally intended for mass center measurements. By utilizing the knowledge
presented in Chapter 7 to reduce environmental disturbances and the Suggestions for
- future mass center measurement work in Chapter 8, the basic design could potentially

be developed for state of the art mass center measurements

' 1.3.3 Synthesis of COntributions

By combining the theory presented in Part I and the physical mass property
“measurements presented in Part II, it is possible to show the importance of combining
physically ‘measured mass properties into the mass attraction calculation. Consider

for example the gravitational mass attraction between two distributed bodies. The

difference in the grav1tat10nal mass attraction calculation between a 51mpliﬁed p01nt -

mass attraction and the method developed in Chapter 3 is 51gn1ﬁcant

For illustrative purposes, consider the gravitational mass attractlon between two
reference masses as shown in Figure 1.4. A cross sectional view of the objects is
depicted. Theseobjects will be further described in Chapter 6 and are referred
to as preferred prmc1pal axis of inertia spheres The spheres contain an ‘internal R
cavity in order to create a spherlcal shaped object with desired mass. properties and
are fabricated in either two or three parts. The sphere depicted at the bottom of
Figure l4isa three—part sphere and the top sphere is a two-part sphere. Both spheres
are of identical rad1us T4, and the mass centers of the reference masses are separated
by R = 3r,%, where 3 is along the direction for the maximum principal moment |
of inertia, I3, for each reference mass. The configuration in Figure 1.4 provides a
mass attraction example for Which'precision mass_property measurements exist for -
both attracting bodies. The torsion pendulum measurement apparatus, which will

be described in detail in Chapter 5, was used to obtain the moment of inertia tensor -
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for each object to approxiinately state of the art precision.

" For the s‘iimpliﬁedv exemple in Fig-
| ‘ure 1.4, the attraction force betweeﬁ two
preferred principal axis of inertia spheres
is investigated by using a point mass -
approximation and then by the method
described in Chapter 3 of this work.
'Ff_irst the attraction force is calculated
by assuming each object may be repre-
sented by a single point mass, such» that
the attraction force is given by F
GMm/ R?5. The three-part sphere has
a measured mass, M, of 455.1g and the
two-part sphere has a measured mass,
m, 'of 448.9 g Next, the attraction force

is calculated_ by utilizing the equations

derived ﬁsing the double Taylor method
~ from Chapter 3, Equation 3.43, and the

measured quantities for the moment of

inertia as presented in Chapter 6, Ta-

ble 6.6. The simplified point mass at-

traction computation results in F, =

- G-36.319N, whereas the'double Taylor Figure 1.4: Configuration for gravitational-
method results in an attraction force of
F,=G 35.204 N. The difference, 100% x

(Fp — Fpr) / Fpr, is about 3.2%. The double Taylor method described in this work

contains as the first term the simplified point mass attraction result. The additional

mass attraction example.

terms in the expansion therefore account for the geometfy and density distribution.
Thus, the 3.2% difference noted here is completely due to incorporation of the mea-
sured moment of inertia into the calculation. Thus, it is seen that the incorporation 4

of measured mass properties substantially aids in increasing the accuracy of the mass



| 1.3. CONTRIBUTIONS AND OUTLINE ‘ 13

attraction calculation. In addition, the computation utﬂizing the measured mass
properties incorporates any uncertainty associated with the internal geometry of the
kspheres and the actual material density idistribution. The cross-sectional view de-
picted in Figure 14 is a simplified ideal geometry for the preferred principal axis
of inertia spheres. -The actual internal geometry, which is not easily measured af- :
_ ter fabrication, does not match exactly the depicted idealized geometry due fo the

fabrication process. -
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Chapter 2
Traditional Solution Methods

2.1 Point Mass Summation

~ For point mass objects! and for objects which are separated by great distances,
the Newtonian gravitational potential at a point due to an attracting body is defined
to be: ' | )

U = o @1

| - (2.1)
~ where G is the gravitational constant, M is the mass of the attracting body and r is
the distance between the point mass and the body. The gravitational attraction force
“ vector is then given by the gradient of the Newtonian potential. Taking the negative
gradient of the potential for a test mass at a point, the Newtonian Force is obtained:

dF .
:r—n-l— = — 7‘2 T ' (22)

where the force is defined to be along the vector 7 between the poirit mass and the
body. For two distributed bodies, one could in principle develop a simple routine

which repeatvedly calculates the force over a very fine grid point representation of the

1The avid reader should note that a spherical shell exhibits the same properties as a point mass.
Thus, a body composed of concentric spherical shells, each of uniform-density, also obeys the same
properties as a point mass. ‘ : :

15
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/

mass distribution However, although it is known that this direct summation method

“is robust and reasonably accurate the accuracy depends strongly on the number of . -

- point masses which are used to represent the mass distribution. In addition, the -
required point mass grid density is a function of the separation distance, the object
geometry complexity and the desired density distribution. As a result, to obtain a
high degree of accuracy, the computational cost is hlgh and scales by the order of the

number of total pomts squared.

The prlmary limltatlon of a brute force point mass summation approach is however
not the number of points and associated.computational cost. Consider for example an
initial g'ravitational mass attraction analysis performed-for LISA. Merkowitz et. al [42]
has applied a brute force point mass summati’on technique to the LISA spacecraft. -
The ‘model for the spacecraft was generated from computer solid models to produce a
finite element model of all the satellite comp,Onents, assuming ideal geometry, density -
' distribution and component location. After running the computation rep‘eatedly until
a convergence wasv observed, the initial results using the point mass summation showed
that preliminary d_esignsfor LISA were only a factor of 4 to 5 times worse than
- minimum requirements for the gravitational attraction properties of the satellite [42].
At first one might believe that the preliminary results indicate LISA is achievable with
a simple point mass representation of the satellite for computing the gra{ritational
attraction force and gradients. Yet the model is merely an approximation of the
actual physical system. It would be naive to believe that a 'point'mass attraction
model alone would suffice for verifying the mass attraction disturbance requirements. -
In fact, the results from the point mass model only test how well the satellite is
symmetrically distributed, or in a dynamic sense how stable the satellite configuration .
- is expected to be. Clearly, ”the models are only as good as our knowledge of the mass

_distribution” [42]. Thus, the uncertainty in how well the model matches the physical -
‘system is the primary limitation of the point mass summation approach. Inactuality,
thereisa great deal of uncertainty in the actual mass distribution for the components
cOmprising the satellite. Consider for example the core component, the drag—free
reference mass. The current baseline LISA pathﬁnder proof mass; Figure 2.1, is a

faceted geometry similar to a cube, composed of a gold-platinum alloy. By inspection
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Figure 2.1: Baseline LISA reference mass. The gold-platinum alloy reference mass
has geometric features preventing a simple representation as a single point mass or
as an ideal cube.

of Figure 2.1, it is clear that the geometry contains features which prevent either a
representation as a perfect cubical geometry for analytical solutions or by only a few
point masses for a point mass summation approach. In addition, it is not possible to
determine the sub-millimeter density distribution of the gold-platinum alloy required
for the grid size dictated by the point mass finite element model [41]. The overall
accuracy of the model will therefore be limited by the uncertainty in the geometry and
density distribution. Therefore, some sort of experimental Verification is necessary to

validate the models.

2.2 MacCullagh’s Formula

In the early 1800’s Poisson [46] suggested the use of a Taylor Series expansion to
represent the Potential. The 1/r term could easily be expanded in a series and then
truncated after the 2nd order. MacCullagh [31] then further developed the technique
by showing that the equation for the Potential at a point due to a distributed body
could be represented by the principal moment of inertia for the distributed body. The

formula for the potential at point P due to an arbitrary distributed body, known as
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MacCullagh’s forrhula,‘ is given by:

- GM G
U(P) = " — t+ 5= o3 (Im_-l- ,Iyy + 1, — 31) . ‘ (2'3) ,

‘ MacCﬁllegh assumes that the origih' of the coordinate system is located at the center
of mass of the distributed body and that prihcipal coordinate axes are used. The
value of I in MacCullaghs’ formula is the instantaneous moment of inertia about
the difection from the origin to point' P. MacCullagh also developed equations for
the Force and Moments at a point due to a distributed body. If one eliminates fhe
assumption of principal axes in MacCullagh’s formula the equation can be generalized '

as?:

GM G =N
UP) = —T—+ﬁ(tmce(1)—3r-l-r) S (2.4)

: Although it is not explicitly stated Equation 2.4 forms the foundation for much' i

of the work done: by Fleming et. al [22] for the Mass attraction analysis of the
Triad-1/DISCOS mission. Fleming develops equations for the attraction force on
a point mass due to a number of different commen‘-shaped distributed bodies. Al-
though Fleming no longer requires that principal axes be used, the orientation of the
axes used is spec1ﬁed such that the Z; direction in a standard Cartesian coordlnate'
system is along the vector between the point mass and the center of mass of the‘
distributed body. Equation 2.4 is a general form and elimindtesvrequirements on the
orientation of the coordinate axes. Still, Qne limitation in applying the method of
MacCullagh and Fleming et. al to gravitational wave observatories such as LISA, is
that the calculation requires one object to be represented by a single point mass. ‘
As already shown in Figure 2.1, the baseline proof mass for LISA may not be easily
‘repfesented by a single point mass geometry. It i‘s therefore desired to develop the
equations further to include the attraction propertles between two general dlstrlbuted
bodies. In Chapter 3, equations will be developed which overcome the limitation of

' the single point mass requirement.

2The generalized MacCullagh’s formula is derived in Section 3.3
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2.3 Analytical Solution: Block Geometry

For‘a spherical geometry, simple point mass gravitational attraction equations can
~ be used to easily calculate the force and force gradients. For the'LISA faceted proof
‘_mass design, the point mass attraction equations can only be used to approximate
the non-spherical geometry for locations which are far from the proof mass relative
to the maximum dimension of the proof mass. For locations which are near to the

proof-mass, a more detailed calculation i is necessary.

An analyt1c solution for the grav1tat1onal mass attraction: force and force gradients
due to a right- angled parallelep1ped or a br1ck geometry is desired. The solution
over a rectangular region is not a trivial derivation and is not widely published..
A few works have been publ1shed which work toward developing the grav1tatlonal
mass attraction force equations for a brick geometry. MacMillan [40] has outlined

~a method for deriving the equat1ons governing the grav1tatlonal potential at a pomt
due to a right- angled parallelep1ped with homogeneous dens1ty Nagy [43] presents
the vertical component equation for the mass attraction force and the limitations of
which are later noted and corrected by Banerjee [2]. Chen and Cook [7] determine an
expression for the mass attraction force in the three principal orthogonal directions
for a uniform rectangular block by apply1ng the method of MacMillan. However
typographical errors in the expressmn as published by Chen and Cook [7] results in
a correct answer for the mass attraction force only along the principal axes. Careful
- analysis of tlre published equations by Chen and Cook indicate a region where a
repelling force exists, which is clearly in error. Therefore, presented here is what is
believed to be the corrected version of the mass attraction force for all regions due
to a right-angled parallelepiped with homogeneous density. The expression is then
further developed to generate an expression for the gradients of the mass attraction
force with respect to the principal directions. Finally, the derived force and gradientv
equations for a brick geometry are compared to a point mass approx1mat1on in an
attempt to estimate the accuracy of such an approximation for the brick geometry

for applications such as LISA.
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Figure 2.2: Attraction at a point due to a brick—Shaped body.

2.3.1 Attraction Force

To obtain an expréésion for the mass attréctiori force at a point due to a right-
angled 'paral.lelepiped, it is recognized that by definition the mass attraction force is
the gradient of the gravitational potential. Let point P = (é;, 1, z’) be a point external
to the body for which the force shall be cbmputed. The potential at point P for the

coordinate system placed at the center of mass of the distributed mass, body C, is

defined to be:. ; ‘ .
UP) =G / / / oLav O (25)
v : ' L

Where the density of body C' is denoted by o and the integration is performed over - -
the volume V occupied by the mass. The distance, r, between point P and a point

Q@ = (u,v,w) located within body C in Cartesian coordinates is:

= VPR = /(e WPt —w?  (26)

The force is the negative gradient of the potential. The component of the force in

the Cartesian z-direction for a test point mass m” at point P due to body C with
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homogeneous density iS'

| Recognizing that an increase in the coordinate u is equivalént to a negative change-

in the coordinate z, one obtains:

# ’ _
c ///8u( z_ )+('y1—v)‘2+(z—w)2) dudvdu'; | (2.8)

:v_loc/A/ [\f(z—u)2+(y1—v)2+(z—w)2] gudw

u1

For a right-angled pa.rallelepiped with length 2a, 2b, and 2c in the z, y, z direction,

Figure 2.2, the limits of integration are simple and the integral equation for the force

P/ L A
c—o //\/x—a 1v)+(z—w)2dvdw_

—c —b

//\/Ha 1') +£z_w)2quw B ‘(2.9> 

becomeS' -

—c =b

It is seen that in order to evaluate the equation for the force, two double inﬁegfals of
similar form must be evaluated. Following the style of Chen and Cook [7], the double -
integral will be simply replaced by a function representation. The double integralvwill
be defined to be:

//\/x—a 1_,0)2+(Z_w)2dvdw v | (210)

—c —b

To evaluate the ¥ integral, the method described in MacMillan [40] is used. First, .
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multiply the numerator and denominator by the square of the integrahd vdeno‘mi.nat(jr.

// @—a)'+ o) +<z—w>iwy E 1) ‘

— v+ (z—w)?)’

—c —b

By addlng and subtractmg the quantlty (x a) to the numerator, the 1ntegrand can

~ be separated resulting in three simpler to. evaluate 1ntegrals

~ At first. it may appear as thdugh the evaluation of one deuble integral was made
more ,difﬁeult by generating three double integrals. Yet the first two integrals in

Equation 2.12 can be rewritten in terms of exact derivatives, namely:

_i (z—w) | 1\: l - (z—a)? +‘(y_v)2 _
P\ (e-arrw-vrre-up) ) (@mare w0 e-wp)
_9 1 (w-v 1\ _ (z —a)? + (2 — w)? _
a‘v ((ﬂ? a a:)2 +y-v)t(e- w)z) E) | ((17 —a)?+ (y —v)? + (z— w)2)§

(2.13)

Substituting the exact derivatives of equation 2.13 into the integrand of equation 2.12,
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the ¥ integral takes on the new form: |

//8w (z — w) | %:. d?:'dw— |

el ((x —a)3?+(y—v)?2+(z— w)z) |

//av | - (y—v) _y : du dw —

=5 P\ (=02t -vp+ (- wp)

- (z—a)? vdw”
—/c_[ :c—a —v)2r+(v2+—_lw)2)%.€ d‘

- . ‘ -c

b ,
\1.’=—/ o (z —w) I
17 o I

b »

o -

U= — (z—c) T dv +
% (@G- + =2+ (z-cp)’
b

23

(2.14)

(2.15)
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/' (y—b) dw +
e (@-02+ -t +(E-wp)’
/ (y+0b) dw — |
| —c‘((a: o +E-wp)t |
/ /b “:v_.a)2  dvdw (2.16)
EASA a:—‘a2 y— )2+ (z - w)2)” o

, All of the single integrals in Equation 2.16 have a common form, which can be eval-

uated using a table of integrals:

/m 1n(f+¢e+a—2+ﬂ2)

After evaluatmg the single 1ntegrals in Equatlon 2. 16 the ¥ 1ntegra1 can be alge- |

braically mampulated to produce

=

(= )+ (@ =0+ = b7+ (z — )

U= (y—b)n

o)+ (=l + =t +(z+0p)

N L

(z — a)? +(y +b)2+ (2 — c)2

—~_~
IS
|
)
~—
+

D=

(=) +(y+ 8P+ (24 2

’)
)
)
(z - @)+ (y = b)? +<z—c>2)
)
)
)

(ST

(y —b)

N|=

(@-a2+@+b2+(z—cp

Nl=

<x—d>ﬁ+(y—b) (et

1
2

(a:—a)2+(y+b) (z+c)2

¥ .
| N |~ N[~ —~ |[—
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// ‘ a=a? ‘ %’d‘vdw' _ﬁ2.17)7 |

$—a)2+(y—v)2+(sz)2)

The double integral term Vin the ¥ integral remains to be evaluated. = Again the
technique of converting the integrand into an exact derivative will be used. The
quantities = — a and z —w are constants with respect to the variable v. Thus one can

write the exact derivative:

Y

Replacmg the exact derivative for the 1ntegrand within the double integral term in

the W integral, the double 1ntegral becomes:

// x—_a>2_ o aw

—v)2 4+ (z — w)2) | |
:‘//(%_ - ’@—af(y’—v) |

Evaluating‘at the limits of integration one has:

// (z o) ’ %dvdw: |

o (@ ap+ o+ (- wp)
/. - | | (x_a)2(y_b)"
* (a2t -wp)(@-ar+ -ty + (= - w)?)

dw—

(S
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*c@z—®?+@4um)0x—@ F by u-wy)x- I

(S

- The two single integrals in Equation 2. 20 have a common form wh1ch can be evaluated
using a table of 1ntegrals | |
BE

- / o’p : 7:1‘ d¢ = atan™? v — bl (221)
@reerprer s T e g e

7 , Evaluatlng the smgle 1ntegrals in Equatlon 2.20 the double 1ntegral is found to be:

= _// " ‘  (—a)? | ~w)2)*% o duw —

(z — a) tan™! (y;b)(Z—C) ‘,1 +
( | (z-a)((@—aP+y—b+(z-02)"
(z — a) tan™! (y—b)(z+c) .
@-ae-ar+@-tr+eron)’
(z = a) tan +b)—c ey
| (z —a) ((iv —a)’+(y+0)°+ (2~ (;)2)'§ |
—(z—a) tan™' - (Y+0)(z+¢) o
'($4a)((x%a)2+.(y—+v-vb) —+—(z—+— ))E -

Using the results of Equatlon 2.17 and Equatlon 2.22, the lIl Integral can be written

in functlon form to be:

v (o . ﬁ 7,7) =

7+(a2+ﬁ2+72)% ~ 7+(a‘2'+32+7)'%‘ .
B1n — —~ — Gln T+
G (e2rpeir)’ "r+(a2+ﬁ2+7)2
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ﬁ+(a +ﬁ2+v)%'

, —Pyln . L "1:+
B+(a2+p+92)" ﬂ+(a2+ﬁ2+7)2'
—o tan™! B T +atan1"x‘ By + +
| (a2+ﬂ2+v) (a2+ﬂ2+‘r2)‘2*
4o tan™! B - — atan™ (2.23)

(et + 5 +77)°

 Equation 2.23 can then be used to evaluate the Equat1ons for the force components at

point P due to body C for coordinate locatlons external to the attractmg body. The

integral equation for the force components at point P due to body C as presented

by Chen and Cook [7] can now be represented by:

P/C
x

where:

Z=[@-a).w-b).+b).(~0).(z+0)
X =|(e+a),y=b).@+b), (-0 (= +0)]
V=[0G +0), (- a),(z+a)
V=[w+b -0t -a)leta)
z=[(z=0)(c~a),@+a). (=1 (v +V)]
Z=[+0.(z—a)z+a)y—b), [y +b)

(224)

(2.26)
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2.3.2 Gradient of the Attraction Force

The current LISA mission baseline design incorporates a cubical free-falling proof
mass in a drag4frée configuration. The drag-free control laws fequire knbwledge of the
force gradients to model StiffneSs terms properly. Having established a ‘representation
of the mass attraction force at a sing‘le' point"due to a regular rectangular block,
one can proceed to develop ‘the properties of the gravitational mass attraction force
gradients. A brute force differ_eritiation of the force equations is possible, since the
equations are composed of elementary terms. The process consists of returning to the
original integral equations for the the'nt‘ial to take the defivativés instead of startingi
with integrated form of the force equations. Yet in order to obtain the desired result
in a simplér manner, Qhe returns to the suggestion pfesénted ’by.MécMillan [40] to

obtain the force equations from the potential: Sy

“It is not necessary to differentiate with respect to the codrdinates in so

far as these coordinates appear ur@der the log and tan™! symbols. Tt is
sufficient to differentiate as though these functions were constants, and a -

recognition of this fact makes the differentiation a very simple manner.”

By extension, since one can treat the tan~! and In terms as constant's. during the ‘
differentiation of the potential to obtain the force, these same terms should also be
considered as constants on subsequent differentiatibns. The prodf for making this
assumption is presented in MacMillan [40] and is discussed further at the end of
Section 2.3.2. I.ndeed, by noting the constant characteristics of the terms Within the
force equatibn,. the derivation of the force gradients becomes quite straight—forwaid.
To differentiate the force equations, it is sufﬁci:ént to differentiate the ¥ (a, 8, B,, 7)/)
function with respect to each of the function arguments, treating the In and tan~!

terms as constants. Differentiating with respect to «, one obtains:
By , 4-tan—! By
a(a2+52+72)2 ' a(a2+52+'72)

on _
da

[SIE
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| + tan™" By - — tan™! — s 7 - (2.27)
a(a2+5’2+’72)2 a(a2+5’2+’72)2 ’
Differentiating with respect to the remaining variables returns:
' 2 2 1 A2)2
9v fy+(a + 8 +'y)
% = Ug=In — T (2.28)
| ’y+(a2+52+’y2)2
. 1
ov - 7+(a2+52+72)2 | '
ry ¥s=~In T - (2.29)
g | ¥+ (a?+ﬁ2+&2)
o B+ (a,2+[7’2+'72)
7 ﬁ+(a2+_52+72)2 =
S .
L ae(eepe)
% = Us=—1In ’ — - (2.31)
.oy A+ (az + 3 +"~)’2)v2 v

By inspecting Equation 2.24 it is éasily seen that the gradient of the force in’ the
z-direction with respect to z involves the partial derivative of the ¥ function with

respect to a. Hence one obtains:

" .apP/C - : i} B
GUimP 8?:5 - ‘Ija(/?) ~ Ve (X) N | (2.32)

Similarly, according to Equations 2.25 and 2.26 the gradients of the y- and z-direcﬁon

forces with respect to y and z respectively are:

‘G&;c[mp 3%1;/0 =‘Ifa»‘(37) —‘I/af(fi) o (2.33)
o o —w(2)-w() ew
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To obtain the gradients of the force in the z-direction with respect to y, the partial
~ derivatives of 3 and 3 are involvéd. Since 8 and 8 occur linearly outside of the In
and tan—! functions, a linear combination of Vs and v 5 is sufficient to represent the '
gradients of the force in the z-direction with respect to the variable y. Denoting the

~ linear combination of the partial derivatives with respect to 3 and B as:
\Ijﬁ (a,ﬂ,é,%;}’) ( 7/6’ /677) ) = [\IJB+\IJB] (a)/By B,’}’,’S’) (235)

the gradient of the force in the a:—dlrectlon with respect to the y varlable can be

. denoted: ' . , ‘ |
o 1 3Fz Y o v | _ |
Goom? dy - [‘I’ﬂ + ‘I’B] (X ) — [Ts +, ‘Pg] (X> o (2.36)

Likewise the gradient of the force in the z-direction with respect to the z variable can

be denoted as:

G cr3 mP 3%:/0 : [Ty + 121 (A?> - [T, }+ 0] (-’\:’> | | (“2.37)‘

By following the recipe set forth thus far in calculatlng the gradlents of the force in the
z-direction with respect to the other two Cartes1an dlrectlons y & z and by carefully'
noting the definitions of the forces in Equations 2.24, 225 & 2.26, the expressions
for the remaining force gradients can be stated‘. Furthermore, since the order of the
differentiation may be interchanged, it is important to note that the Jacobian matrix

- is symmetric such that there are only six unique gradients of the force Wiﬁh respect to |

translatlon However, for completeness the expressmns for all of the remalnlng force

o gradlents will be stated.

Garlz }nP 3@2/0 (¥, ‘ ) (V) - 12, + v ) L)

L () - ud () eoo
1 9FF/¢ L N

Goon? oz — L8 + g (Z) [+ T3] (Z) (2.40)
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éaimé Z?F;’;/C ¥, +‘I’]( ) [, +‘1’7]( ) (2.41)

Observation

In order to prove that the tan~! and In terms may be treated as constants during'
the differentiation of the force to obtain the gradient, one can follow the proof set forth
by MacMillan [40] when the force was obtained from the potential using the same

method. However, the equations for the gradient of the_force presented in section 2.3.2
“can be obtained without assuming a constant characteristic for the tan—! and In terms.
' Wiphout presenting a complete defivation, a basic outline for the process is presented.

here.

Begin with the deﬁnltlon of the potentlal Equatlon 2.5, for the homogeneous

/// dusdv dw

—c —b —a

density pa.ralleleplped

v where the distance, 7 between the two points was defined to be:

The force is defined to be the negative gradient of the potential and the component of

the force in the Cartesian z-direction is the negative partial derivative of the potential

GcrcmP ///Bac (r) dudvdw o »:(2.42)

—c —b —a

with respect to z.

Takmg the gradlent of the force in the z-direction as an example one must further
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differentiate with respect to z to obtain:

1 R S
 GoemP 0z ///6z (63:( >> dudvdw -

—c —b —a

-] / 2 (22)) e e

—c —b —a

The innermost partial derivative of 1/r is eas1ly evaluated and the gradient of the
force in the z-direction becomes: ‘

i o ‘ ' c-b a E
-1 Q9EFF© o
- Go*mP Oz ,_ ///512( 3 ) dudvdu

—c —b —a

c b

--//I%

—c —b

] dvdw (2.44)

To obtain the results preserited‘ in Equatron 2.32, one must only _‘c'arry out the inte-
gration of Equation 2.44. This is easily achieved with the help of a table of integrals.
The following forms of integrals will be encountered in the process:

/ o d¢ = ot
J(@+at+)i " (@)@

af _ o BE '
/ (a2+§2)\/§2—+md£ = ten (am) «

. For the gradient of the force with respect to the other variables, y and Z, the followmg
' forms of integrals will be encountered in the process

Al

£ , 1
. d —_ .
/(gz__,_az_,_ﬁz)%g Ve +at+ B
/ 52}1042+ﬂ2d§ = ln(§+V§2+0‘»2+ﬂ?)‘
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Tdentifier Description Value Units

“2a  Nominal z-direction 40 [mm]
-length of body C A o
2b ~ Nominal y-direction 40 [mm]
~length of body C B
2¢ ‘Nominal z-direction 40  [mm]
‘ ~length of body C ’ '
-m% Mass body C 137 kgl

mP Mass point P 1.0 kg

Table 2.1: Simulation parameters for force and grad1ent at po1nt due to a homoge— ',
neous density cube. o .

- With the knowledge from the table of 1ntegrals the equat1ons presented in sec-
thIl 2.3. 2 can be obtamed

2.3. 3 S1mulat10n Results

Using Equat1on 2.24 for the force and the equatlons in Sect1on 2.3. 2 for the gra—‘ ‘
dients of the force at a point due to a right-angled parallelep1ped with homogeneous
density, it is helpful to plot the expressions over a region and to compare the results

to that of two point masses. In so doing, it is poss1ble to determme the error pro-

'duced by approximating a cubical geometry by a. s1ngle po1nt mass representatlon _

: To begin the calculation, the baseline LISA faceted proof mass design i is selected for
the right-angled parallelepiped (body C): a 40 mm cubical proof mass of 1.37 kg with -
an assumed homogeneous density. . A Cartesian coordinate system is placed at the
center of mass of body C and a 1kg point rnass is placed at point P consistent withf‘
Figure 2.2. The simulation parameters used for the calculatlon are summar1zed in
Table 2.1. The force FP/C and gradient of the force at po1nt P due to body C is |
then calculated for a region in the z-y plane. Since the central attraot1ng body is
symmetrical, the force in the z-direction will be of pr1mary concern For an initial
check, the :c-d1rect1on force in the vicinity of one quadrant of the cubical proof mass
is cornputed, as shown in F_igure 2.3. Contrary to the equations presented by Chen

- and Cook [7], the plot indicates an attractive force (the z-direction force at point P is.
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in the negative z direction) for all points within the region. In addition, the presence
of mass at the corners, which is non-existent for a spherical or poiht mass attfacting
body, generates an increase in the mass attraction force for a constant radial distance
relative to the mass center near the cube corners as expected. It is therefore con-
cluded that the minor corrections Ihade herein to the equat‘ion‘s presented by Chen :
and Co}ok [7] are valid. | | |

" By taking ‘the difference between the mass attractiori force due to a point mass
attracting body of equal mass and the mass attraction force as calculated for the
‘c‘ubical geometry, the érror associated with approximating a cubical geometry with
a single point mass can be understood. Figure 2.4 depicts the difference in the -
direction force along the z-axis between two point masses and a cube and a point mass
(force between two point masses minus the force between a cube and point mass).l
-Due to the nature of the gfavitational potential, it is well known that only disténcés
“close to the attracting body generate a significant deviation in the actual force from
d point-'m:ass approximatioh. The slopé of the log-log plot in Figure 2.4 indicates. |
- that the difference between a pbint mass approximation and the actual force due to
a cubical object along the z-axis behaves approximately as one over the separation |
distance raised to the fifth order. Depending on the desired accuracy and location
from the mass center of a cubical attracting body, a point mass a’ppro:éimation for
a single point mass may or may not bé acceptable along the g-axis. For exémple,
“according to Figure 2.3 the forcev along the z-axis due to the cubical geometry will
‘be on the order of 108 N. Returning to the LISA. noise budget, a maximuin total
static self gravity acceleration of 5 x 107m/s? is necessary for LISA disturbance
requirements [42]! If the knowledge of the mass attraction force is desired to have
an‘unCertainty less than 10;10 N, consistent with the LISA requirements, then from
Figure 2.4 it is seen that a point mass approximation may only be used for the ratio
of z/ % greater than approximately 9. This estimated boundary is intended only to
vprovide intuition in the gravitational mass attraction analysis, since a more thorough
analysis is necessafy to establish comprehensive guidelines. In addition, it should be
noted that this estimate is valid for the attraction at a single point Ialohg the z-axis

only, although the general technique can be applied to any point in space external to
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Defta Fx , [N}

Figure 2“.’5: Delta FY /C between point mass and a cubical geometry in z-y plane.

the attracting body. B
"I-‘he difference»in the z-direction force between ‘a point mass approximation and the
actual force due to a cube and a point mass for the r:n—y’plan‘e is p'lotted in Figure 2.5,
with the right sub-figure presenting a projection onto the z-y plane. Byb examining
thevcontﬂotnff’ plot, it is clearly seen that close to the cube face center along the z-axis
the mass attraction force due to the cube is less than a point mass approximation.
That is, ifa point mass apprbxi_mation is used to represent a cubical geometry, the
actual force for the cubical geometry wauld bé less than the point mass approximated
value along the x-axis. As the radial distance is kept the same and the location of the -
‘point P/approach:es' the corner of the cube, the point mass approximation becomes
an underestimate of the actual force. The equivalent point mass distance to obtain
the same force is closer near the corners of the cube and the equivalent distance is -
further away on radial directions near the faces of the cube. It is also interesting to
note that in the contour plot of Figure 2.5 there exiéts a region for the force in the
x-diréption where the difference between a point mass approximation and the true

analytical solution for a cube is zero.

The gradients of the z-direction force with respect to the variables z and y’were
computed for the z-y plane. The gradients of the mass attraction force in the z-
direction for a cubical central attracting body are depicted in Figure 2.6 & Figure 2.7.

. Inspection of the gradierit contour plots shows the expected similar behavior between
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a cubical and point mass attracting body. For the cubical case, the gradients become
more intense close to the cube corners and faces. For the gradient with respect to z
variable, Figure 2.6 shows that the discontinuity has‘been shifted from the origin to
the cube face. Similarly, for the gradient 1with' respect toly variable, Figure 2.7, the
discontinuity has been shifted from the brigin to the cube corners, causing a more |
rapid change in values of the gradient as compared to a point mass attracting body.
Again, to more readily see the difference between the force generated by a cubical
and point mass attracting body, the gradient of the force from a cubical geometry

is subtracted from that of a point mass approximation. Presented in Figure 2.8 and
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Detta dFx/dx , [N/m]

¥, [m] 00 x, {m]

p/c | . : ‘
a%x, between point mass and a cubical geometry. -

Figure 2.8: Delta gradient |

i
/AN

il
//I/I//I/
A
% A
A ///,//;//

4
y
b

il
i
75
e

i

n

)

7
%

57

i
Iy

7

7
g,
i
Z
7
////

Delta dFx/dy , [N/m]
'

8 & L b

¢
7
7
7
%,

&
&
"\

,

7
7%
%

2
2

7
%
%

Y,
%

3
>
D
D
XD

%
5

y, [m) v 0 xim . 00

. . gpPIC : :
Figure 2.9: Delta gradient aLgy—- between point mass and a cubical geometry.

Figure 2.9, is the difference in the gradient'between the two different geometries, -
where the effect of the cube corners and face is clearly seen.. Thus, if a point mass
were to be used to approximate the cubical geometry, the lafgest error for both the

. gFF/c aFF/c . N .
gradients =%£— and - would be in the vicinity of the cube corners. For the

. . P/C - T .
gradient with respect to the z-direction, B—ng—'—, a significant error would also exist

through the center of the cube face. Similarly, for the gradient with respect to the

. . P/C .. ) . . . . . PR
y-direction, iﬂa’y—, a significant error in using a point mass approximation would exist

around the 7/8 4 nm/4 radials near the cube face.

With theknowledge presented in Figure 2.8 and Figufé 2.9, one cari return to the
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Deita dFx/dx between Cube and Point Mass (dFPoint - dFCube‘)

Delta dFx/dx, [N/m]

10° 10t
. x/2a, {m/m]-. .

Figure 2.10: Delta between point mass and a cubical geometry z-direction mass
attraction force gradient. :

LISA requirements for the uncertainty in the gravitational attraction force gradients
to determine when a point mass approximation is acceptable for use. For ‘LI_SA, a
total static self gravity acceleration gradient of 3 x 1078572 along the measurement
axis is expected to meet the science goals [56]. The largest error for the gradient
with respect to the z-direction, Q%?, when using a point mass apjﬁroximation exists
along the z-axis. The measurement axis for LISA is along the z-axis, normal to the
disturbance free proof mass face. The difference between a point mass approximation
and the actual gradient of the mass attraction force' due to a cubical object along
the z-axis is presented in Figure 2.10. From Figure 2.10; it is seen that a point .mass
approximation may only be used for the ratio of x/2a greater than approximately 2 if
the knowledge of the mass attraction force gradient is to have an uncertainty of less
than 107852 consistent with the LISA requirements. Yet, forr LISA this requirement

is for the contribution of all the components in the satellite and not just for that
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of a smgle pomt mass. Thus this estlmated boundary is 1ntended only to provide
1ntu1t10n in the grav1tat10nal mass attractlon analy31s and is valid for the gradient of

the mass attraction force at a ‘single point along the z-axis only.

Observation

Limitations of the manufacturing p'rocess‘pre'vent the existence of a "perfectly ho-
mogeneous test mass. Variations in the density distribution of the manufactured test
mass will lead to an uncertainty in the mass attraction analysis. In addition, as
, shown in Figure 2.1, the baseline LISA test mass contains geometric features, causing
‘the actual geometry to deviate from én ideal cubical objecf! An al,ternatvivé solution
'Izn_etho‘d is presented in Chapter 3, which is extensible to analyses involving density

inhomogeneities and the attraction between two general-shaped distributed bodies. -



Chapter 3
The Double /’_Taylor MéthOd |

It has been»demonvstrated that the gravitafional field apd the corresponding gra-‘

~ dient at the proof mass can be determined by calculating the contribution from every

‘mass element in the satellite. The first drag—free satellite Triad-1/DISCOS [22], for.:
‘example determined the mass attraction at the proof mass by representing satellite .
‘components as a combination of regular geometric shapes for which the attraction
force could be easily calculated. By use of the spherical proof mass geometry by
the Disturbance Compensation System DISCOS, the mass attractlon computation
- could therefore be treated as a point mass and a distributed body (satelhte com-
ponents). The mass attraction analysis for Triad-1/DISCOS could then utilize and
build upon the theory developed by Poisson [46] and Mchullagh' [31] in the 1800’s.
MécCullagh' [31] as well as Fleming et. al [22), shbwed that the gravitational mass at-
traction at a point due to a distribufed body could"thll‘ouglh,a Taylor Series expansion
be expressed up to the third order by using moments of inertia for the distributed

body. In fact, Fleming et. al notes that the mass attraction formula through a sec-

~ ond order expansion consists of the measurable quantities of mass, mass center, and

mbm_ent of inertia about the mass center. Indeed, the mass attraction analysis for
the Triad-1/DISCOS mission was conducted by utilizing these physical quantities.
In this work we again follow the technique of expanding the gravitational potential in
a Taylor Series expansion to obtain the attrdction force and gradient and developa a

set of equations for the attraction properties between two general distributed objects.

41
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Figure.3,1: Distance between point P and a point on the distributed body.

In addition the solution is expressed as a full serles expansion Withont truncation for
a complete solution. Thus, the solution can be calculated to any desired expansion
~order and the next higher order term can also be calculated to estabhsh a bound on

- the magnltude of the neglected terms.

3.1 Force Between Distributed Mass and a Point»

The previous works of Poisson, MacCullagh and Fleming all used a Taylor Series
expansion of the Potential as a foundation for computing the attraction force at a
single point due to an attracting body. These works all truncated the series expansion
at the second order and were valid for a single point only If one returns to the notion
of using a series expansion for the function representmg the distance between two
points, one can. develop an equation representatlon for the attraction force between
two distributed bodies. Let point P = (a, b, ¢) be a point external to the body for
which the force shall be computed. We then have for one over the distance between
two points in Cartesian coordinates: ‘

Flay,2) = 1 | BRNCE)
Vie—z)2+(b—-y)2+(c—2)? .
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The Potential at point P for the coordinate system placed at the center of mass of

 the d1str1buted mass is therefore:

G///afmy, ydz dydz : (3.2)

Where the density is denoted by o and the integration is performed over the volume
occupied by the mass. The force is the negative gradient of the Potential and the

component of the force at point P in the Cartesian x-direction for a point mass at P,

:;G///Ufl’o’o(w.,y’,Z)d;vdydz' v ) (5-3) |
v , ' ‘ ‘ .

- For s1mp11c1ty, when taking gradient of the Potentlal a constant dens1ty o throughout

is:

the mass was assumed The comma-delimited superscrlpt notation is used to denote

the derivative order with respect to the first, second, and third coordlnates (X,y,2)-

- Using the definition of a Taylor Series Expans1on [55], one can write an expression -

for the derivative of f:

m;@ozo} (3.4)
s

"fl""")(:v Y, 2) = f: L (a2 Ay LA NfivO’O
N | N N! oz Oy 1 0z).

If the expansion is taken about the origin (% = 1o = 2, = 0), then Az is just x
and similar for y and 2. The power term can be represented using the multinomial
formula [55] such that: ' '

0 8 o\

(ogprangrag) - -
N o\ ™ a\™ 5\

Z N1INZINa! (Am—az) (Ayb'?;) (Aza) (3.5)

VYN=N;+Ng+N3

Where the Summation is taken over the set of all non negative integers Ny, Ny, N3
such that N = N; + Ny + N; (Denoted VN, here-after). Since the power term is also
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operating on the powers or rather the order of the derivatives ‘one can also incorporate
the derivatives of f into the formula using the superscrlpt notation, obtalnlng a Taylor

Serles Expansion representatlon of f100 (z,y, 2):

. ) . o) Nl ' 8 > ’ 1 ‘ ’
FL.00 (mzy, z) = NE 0 [N' (E W (Am)N’ (Ay)N (Az)Ns FIHLN N :“::::é’ﬂ
- z2=2z0=0 .

(3.6)

The integration over the volume as denoted in Equation 3.3 can be carried out,
noting that the only variation with respect to z, Y,z is contained within the A terms

in Equation 3.6. We denote the volume moments using the nomenclature described

in Tuzikov [66]: L
ij{fcz///miyjz,kdmdydz : o o - (38.7)

~ and in a similar manner then choose to define the mass moment, for Body C about

the center of mass, point C, with density o°¢ by: ‘

cj/f /// Zgﬂzkdav dydz : (3.8)

Then, by taking the representatlon for the mass moments, Equation 3.8, and substi-
tuting the result obtained in Equation 3.6 into Equation 3.3 we obtain a Taylor Series
representatlon for the attraction force in the m-dlrectlon at p01nt P without having

truncated the series representation:

(e 9]

= - C/Cc LNp+1,Ng.N3 |
GZ {N' (Z NIINQINs Mg ] :z;zzg)] (3.9)
) ' z2=zo=0/ " .

N=0

3.2 Mass Moment Calculation

In order to evaluate the expression for the force in an efficient, computational

manner, one must determine a method for eve,luatiflg Equation 3.8, the mass moment
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integrals, m,-,j;k. As shown by MacCullagh [31], if the Taylor Series expansion .is
taken to the second order, theattraction force can be represented using the moments
of inertia for the distributed body. Similarly, as noted by Fleming [22] if regular
geometric shapes are used to represent the mass distribution, for which the Inass
moments can be obtained, the force b‘can be calculated. Thus; we see that there' are

“two simple methods for determining the Mass Moments:

- 1. Represent mass moments using moments of inertia for the entire body. (Second

order expansions)

2. Decompose an object into sub-elements and represent mass mobment“s"for the
entire body using a summation of easily calculated mass moments. ~(Higher

order expansions)

Each method: for determining the mass moments has unique benefits which must
~ be considered for the particular application. For exe,mple, the moment of inertia
method tends to be favorable for the incorpera;tion of thSical measurements inte the
ce,'lculatien,,whereas the subelement repfesentation tends to be more applicable to a

computer modeling approach and higher order expansions.

- 3.2.1 Moment of Inertia‘Method

After tiuncating the double Taylor Series expe}nSion at the second order, one can
use standard moments of inertia to represent the geometry of t‘he distributed mass,
dnd hence the mass moments required by the two distributed mass force equation. It
is convenient to use moments of inertia, since expressions for a variety of geometrical
shapes exist. ’In addition, for those irregular shaped objects, the moment of inertia
tensor can be physically meaSured, which would include unknown variations in density
~ and geometry. | | »

’ ‘By} looking at the integral definition for the moments of inertia, the relationship

between the mass moments and moments of inertia is easily established. The moments
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of inertia are defined by:

IC/Cc—/// O+ dodyds 15 = ///a rydedydz
IC/Cc _ /// .’L' +Z d(];dydz . ];z/cc = —///dcyzda:dydz (310)
]C/CC—/// z? +y )dzdydz IC/C°— ///a a:zda:dydz

Usmg the definition of the mass moments Equation 3.8, the relatlonshlp between the

moments of inertia to the second order mass moments is found to be:

I = mEl + mEl I = —ml
C/C . c/C c/C : C/Cé._ __2aC/C ; :
I c. m200° + "”002c . ) ’ Iyz ci_ ] "”0,1,1c (3'11)
C/C c/c c/c o C/Cc _ i ClCe
I ‘= "”200c + m020° o Izz ¢ = ml,O,lc

Solving the equations for the second order mass moments in terms of the moments of

inertia one finds:

C/Cc. _ . C/C
mz,o,oc 1 1 . 1 Iz:c'c
c/c =1 _ cje
mg/Ce 3| 1 -1 1| | Iy
c/Ce g : cjc : ‘
'm‘o,(/),zc : 1 ‘ 1 '—1 Izz/ ¢ (3'12)
C/Ce — __JC/C : C/Ce _ __JC/C . anC/Cc — __JC/C,
ml,l,oc - Izy ¢ mo,{,f - Iyz/ ¢ o 7n’1,0,1c - I:cz ¢

Having truncated the double Taylor Series expansioﬁ at the second order, the only -
‘remaining mass moments which need to be defined are the first and zero order mass

moments. The zero order mass moment m¢/S is simply the mass of the distributed
o ) 0,0,0 y

mass. If we define the coordinate system to be at the center of mass of the distributed

- mass, then the first order mass moment m&/S , m&/% , and mg;5 will be equal to

zero by definition of the mass center.
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Figure 3.2: Tetrahedron defined by three vectors.

©3.2.2 Tetrahedron Decomposition Method

Using a finite element approach, we Wish to find ah expression for the mass mo-
ments (including higher order terms) for a reguiar geométrical shdpe»and then use the
solution to construct a representation of a larger distributed mass. A tetrahedron,‘-
- for example, can be used to decompose a large three-dimensional object into smaller
polyhedra. In works by Tuzikov [66] and Sheynin [49] a closed form solution for an
expression which generates N order vblume moments for a tetrahedron is derived. If
we define a tetrahedron, which has one vertex at thé origin- and each of the other three
vertexes defined by coordinate pomts a,b, ¢, Flgure 3.2, then Tuzikov and Sheymn

} deﬁne the volume moment of the tetrahedron to be [66] [49]:

Mklkzks = det(A) kl'k2'k3' Z (H H((Zz— kz] ﬁ ) . | . (313)

(k+3) (kij)e X ig=1 (kis!)

where the matrix A is composed by the cbordinates of t’he vertexes such that A =
[@,b,Z]. The set X is a set of 3 x 3 matrices (k;;) for integers ki, k2, k3, which denote
the order of the volume moment, such that 0 < ki < k; and Z?:'l lkij =k, 1=1,2,3.
For the computation of the force equations, it is suggested that the volume moments

for a tetrahedron be produced using Equation 3.13, and then placed into function
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files for faster cOmpu'tatien. The author has found the Matlab symbolic toolbox
quite helpful in generating the desired moment order equations. Refer to Tuzikov [66]
and Sheynin [49] for a detailed derivation of Equation 3.13. A listing of the volume ,
moments‘ tlp to the third order can be found in Sheynin [49] and are repeated in

Section Al up to the second order.

In order to evaluate the attraction force given by Equation 3.9, we require'the
mass moments to be evaluated about a coordlnate system located at the mass center.
Although the volume moment expression in Equation 3.13 utilizes a coordlnate system
with an origin located at one vertex of the tetrahedron, a simple procedure will allow
for the volume moment to be calculated at the centroid of the tetrahedron Given a
tetrahedron with one vertex at the origin, Equatlon 3.13 is used to calculate the Z€To.

and first order volume moments: M0, M1,00, MO 1,05 M001 The location of the

Mio0 Mo,1,0 Moo,1 ' .
Mo00 Moo’ Mo,o,o]' The coordinate

axes can now ‘be translated to the centroid. Furthermore, by using the location of

centr01d by definition is then: [xcm, Yerns zcm] = [

' the centroid as a new vertex, the Original; tetrahedron can now be represented by four
sub- tetrahedrons consisting each of the centroid as one vertex and each side of the -

.orlglnal tetrahedron. Refer to Figure 3.3 for a geometrlc ‘depiction. Equatlon 3.13

" can then be used to ﬁnd the volume moments of each of the sub-tetrahedrons and

added together to find the volume moment of the original whole tetrahedron -about
the centroid. By assuming a constant density across the tetrahedron element, the
mass moment is then obtained by simply multiplying the volume moment by the

constant element density.

3.3 MacCullagh’s Formula DeriVation

The Taylor Series representation for the attraction force at a point due to a dis-
tributed body, Equation 3.9, can be algebraically manipulated to obtain the general
form of MacCullagh’s Formula; Equation 2.4. We begin by ignoring the derivative

order in the z-direction in Equation 3.9 (‘which>Was produced by taking the negative
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Figure 3.3: Tetrahedron represented by four sub-tetrahedrons.

gradient of the potential) to obtain the Potential at Point P:

———U (P) = 3 1 —N! C/Cc N1,N3,Ng
G o Z [ﬁf (V; NI!N2!N3!mN1,N2,N3f ZE:ZE:(;) (314)

N=0

According to the formula, one is to take the summation over the set of all non nega-
tive integers Ny, N3, N3 such that N = N; + Nz + N3 (Denoted VN,, ). MacCullagh’s
formula only incorporates mass moments up to the second order. Thus, for an expan-
sion up to N = 2 one éxpands the summations for the sets of IV listed in Table 3.1.

After expanding for the sets of N up to order two, one obtains:

U(P) _ C/CchOO
G 000
/Ce £1,0,0 C/Ce 0,10 | pnC/Ce £0,0,1
+ 100Cf + My, 1,0Cf oo 1Cf
1
C/Ce £2,0,0 C/Ce £0,2,0 C/Ce £0,0,2
+ 2 2oocf +mozocf +mooch

PSSP R 2 IS ) (319
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Order: N N; N, Nj
0o 0 0 O
1 0 0

1 0 1 0
0 0 1

2 0- 0

| 0 2 0
' 0 0 2
2 1 1 0
0 1 1

1 0 1

Table 3.1: Sets of N for second order expansion.

By vchoosing the mass center as the origin of the coordinate system, the first order

mass moments about the mass center are all identically zero for Body C' (m{(% =

moc{coc = mff{)cf = 0). Simplifying by using the mass center definition, one obtains:

‘ ;U (P) _ c/cc 0,0,0
——G— - ooof
: | '
b (mes e mele mE
+2mi’{%“f“°+2m§§"1“f°“2mfé€“f“°") BRRNCED)

We further procéed_by calculating the derivatives of f, where the distance between

. the mass cénter and point P is denoted by:

r=+a+yte2 (3.17)
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The calculated derivatives are then:

| 1 |
Fo00 — = (3.18)
S T
fz,o,o — 31.2 _ l fl L0 _ 31‘?]
5 13 5
fozo__:_s_y_f_l f011_‘3yz
r5 o3 , rs
f0,0,Z = 3_22 _l ’ ’ f»l‘,O_,l = %
T T 3 . : G
Substituting into Equation 3.16 to obtain: |
UMP) " el R I
TP mgeel D '
o e (3221 oo (32 LN e (327 1Y
s 5(’”2"“* ) T (s T ) s (s s
| 3ry ‘3,y2' | 3zz ; L
+2mis st Qmo'c,i,cf;—s“f?mfé,cf?) T (3.19)
which further rearranges to:
T — m0,0,0 —
1 .
g (— (mg/Ge +mglGe +mgice)
312 3y2 . 322
M0 2 T Moas g Y Moos
3zy 3yz o0, 3T2 S ”
+2miE T 2me Tt 2mi{,icr—2) - (3:20)

In order .to: obtain the generalized MacCullagh’s fbrmula, one must transform the

mass moment representation into moments of inertia. This is achieved by adding and ‘



52 ' CHAPTER 3. THE DOUBLE TAYLOR METHOD

subtracting mass moment terms for a net change of zero to the equation.

]U(P), B

C/ccl

= m
G T e

cjc. c/c c/ee\ _ c/c C/Ce - c/c
+ 2 ("Lg,o,oc + mo,z,oc + mo,o,zc) 3 (mz,o,oc + mo,z,oc + mo,o,zc)

2r
, , 2 : 2 2
+m0/cc3z + C/Cc3y + C/Cc3z
2,00 .2 0,20 1.2 o,o,? r2
' 3xy Jyz | o 3x2 .
+omgie = + omge = amle =t | (3.21)

Collecting’te‘r.ms with the common factor of three:

U(P) : C/ccl'
G 0,0,0 r
T+ 1 2(m0/cc~+ mC/Ce +'m0/cc)'>_
2,,,,3 2,0,0 Q,Z,O 0,0,2
2 v yz : , 22 .
C/Cc __ 4yC/Ce C/Cc _ 2yC/Cc C/Ce __ . C/Ce”
3 mZ,‘O,OC . ‘mZ,O,OC ,,,,2<+ m0,2,0c mO,Z,Oc ,,,,2 + m0,0,2c m0,0,2c T2+ )
S e XY yz 2z LT
o Cc/C T __ Cc/C g7 c/C -
2’rn’l,l,'oc 7'2 2m0,1,lc T2 ' 2m1{071c ,,.2 )) : (322)

Creating a common denominator for the terms multiplied by the common factor of

three:

UP) _ creel
G 0,0,0
+i 2 (mC/Cc + mc/cc + mC/CC)
o3 2,0,0 0,2,0 0,0,2
24,2 .2 2
g peree X XY 2o
200 3 20,0 2
2 2 2 - . 2
0T ‘+y + z —mC/CC&-{—
0,2,0 7'2 . 0,2,0 T2 .
2 17,2 2 2
mC/Cc"’E ty +27 C/Ccz_+ .
11%0,0,2 7'2 ©70,0,2 ,,..2
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[+ y Cyz C‘Z . :
— om0 omGi Y amle )) (32

Collecting like terms:

U(P) . VC/cc_ _
G - o,o,o,,,,‘

1 |
t5.3 (2 (mgsse +mg éff +my écf)

5 .
I
c/c c/c, .
- 3(_2 (Tn’ozoC +m002°) +
: y_( C/Cc_i_mC/Cc)_i_‘
r2 M3 0.0 ] 0,0,2
2
c/C c/C
2 ("77'200C + mozoc) +
' XY Yz Tz \ : :
o c/c c/c. _C/C .
' 2m1 1oc ,,, —2m 01 1c 7‘ —2m m, ,0, 1c 7‘,2 )) ‘(3124)

The mass moments can now be replaced w1th the moments of 1nert1a usmg the
relatlonshlps hsted in Equatlon 3.11.

. 1 , |
+ 53 (Iffc + I + I7]
2

C/Ce y? C/Ce c/Ce
3( 2IM + 2Iyy + 2Izz

gfgyf(’c + 2y2 I;Z/CC +2% Igz/Cc)) ~ (3.25)

Finally, by replacing the moment of inertia components with tensor notation, and
noting that the zero order mass moment is simply the mass, the generalized version
of MacCullagh’s formula, Equation 2.4, is obtained. '
| ' GM G _ _ X
U(P) = ,T+2—'§(t7'ac€(' )—3’f'I’f‘) (326)
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3.4 For(:'efBetween Two Distributed Masses

Having established a representation of the attraction Force at a single point due
to a distributed body in a non-trhncated Taylor Series, we ‘ean proceed to develop a
solution for two distributed bodies.. Looking closer at Equation 3.‘9; one should notice
that all of the information concerning the location of point P is contained within
' the LN term, which was evaluated at the origin. By integrating the solution
over a second volume with homogeheous_ density (dm = odV), for all possible peints
P with incremental mass dm, we can obtain the desired solution for two distributed
bodies. Since all the information fegarding point P is contained within the fN1+LN2, N
'term, evaluating the volume integralvover the force reduces to determining_ the triple

integral over fN1+LV28s for all points P within the volume:

z=z0=0

" |1 Y |
Fo==G)_ |5 | X Mo ™ bas / 1/ A adadbde
~ N=0 " \wn, T 3! voveZ
- | | - (3.27)

Agam using the Taylor Series expansion and multinomial formula technlque descrlbed

in Sectlon 3.1 a representation for the volume 1ntegral is found to be:

s=zo=oda db de

‘ /‘\/‘/o.df‘N1+1,N2,N3
v .
’ o0

¥=yo=0
z=zo=0

D/Dc hsl 82,83 so=z o
E : S' E : S1'S2’S3 Sl 52,53 Nj+1,Ng,N3 be —ycm ’

S:

(3.28)

- The sub- & super- scrlpted function A represents the repeated derivative of f (z,y, 2),
such that the first derivative f"’1+1 NoN3| om0 evaluated at the orlgm is represented

Y=yo=0
z=z0=0

by the subscript and the superscript represents the continued derivative with respect

‘to the point (a,b,c), which is then evaluated at the center of mass of the second -
body. 'Thev‘o_rder of the subscripts for the repeated derivative function h will match
the order of the corresponding mass moment multiplier for Body M. plus one due to

taking the derivative of the gravitational potential function to obtain the force in the
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Md
(Xcm, Ycm, Zcm)

Figure 3.4: Two distributed bodies with coordiha‘ce origins at mass center.

-z direction. The order of the superscripts will match the order of the corresponding
mass moment multiplier for second body .Mj.. ”

The repeated derivative functioh is applied to Equation 3.1, the distance between
two_points in Cartesian coordinates. To generate the repeated derivative function
Y, first the derivative with respect to z, y, z is taken to the order 4, j, k, the resulting’
function is then evaluated at (z,y,z) = (0,0,0). The result now contains only the
variables a, b; c. Next the derivative is taken with respect to a, b, c 'to the order p, q,r
and then evaluated at the point (a, b, ¢) = (Tem, Yems Zem)- |

Although it is suspected that a series could be used to represent the repeated
derivative, it was found to be simpler to manually calculatef’he derivatives and place
the results into software function files. The Matlab symbolic toolbox and the differ-
entiate command was used to automatically generate the derivatives. These functions '
can be calculated in a loop and by creatively Writing the Matlab co_de to actually gen-
erate Matlab function files containing the resulting derivatives, the repeated deriva-
tives _function‘s are easily calculated for predetermined orders.

For the Taylor Series expahsion of the second volume, the expansion is performed

about the center of mass of the body, (Zem, Yem, Zem)- The displacements from the
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point of evaluation for the Taylor Series expansion are therefore‘representéd' by:
Az = (a—Tem) Ay = (b — Yom) | Az = (¢ — 2em)

As a result, the mass moment is calculated about the center of mass of the body. If a
primed coordinate system is a simple translation to the center of mass of the second

body, then the mass moments of the second distributed body can be represented by:

fé’f°—/// (@ — Zem)P(b— ycm) (c—zcm)dadbdcv |
/ / / )’dx'dy'dz | o s f (3.29)

'Finolly, 'coilectlng the results of Equatlon 3.29 and Equation 3.28, we have an eXpreS—
sion for the attraction force in the z-direction: It should ‘be‘ noted that the negative
sign is dropped to obtain the force on the central body dlte to the second distributed .-
body. The expression is in coordinates with an origin located at the center of mass
of M,.

1 N! C/Cec ) . v
oo {V lz(m—m o (330
1 mP/P 51,52,5 |
e 719273
Z[ (Z 51|52|53 Ms1.55.53 N1+1 Ng,N3 Z"Z;ﬁg)] ‘
S=0 - co=zZem

By noting that in the derivation of the force in the :c-diréction, the partial of the

~ Potential function with respect to z gave rise to the NV, + 1 term, an expression for
- the Force in the y and z directions can be quickly determinéd. This is achieved by
modifying the subscripts on the repeated derivative function A. Forthe y direction,
the proper subscripts are (Ny, N3 + 1, N3) and for the z direction the proper subscripts
are (N1, Ny, N3 + 1). The increase in the derivative order as such, results directly from

the fact that the Force is the gradient of the gravitational potential function.
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Order: X X: X2 X3

0 0 0 ©0
1 0 O
1 0 1 0
0 0 1
2 .0 O ’
0o 2 0
0o 0 2
2, 1 1 0
0 1 1
10 1

Table 3.2: Sets of N and S for double second order expansion..

3.5 Gradients of the Attraction Force

An expreséion for gradients of the attraction‘force in each of the .prin‘cipa;l di-
~ rections can also be quickly derived from EQuation 3.30. This is achieved by once
‘again manipulating the derivative order in the repeated derivative function h. Sup-
pose for 'example we wish to calcuiate the rate of change in the z-component of the

force as a displacement in the y-direction of the first distributed mass is observed.

That is we wish to determine %i;. By manipulating the subscript notation on the
repeated derivative function h to (N7 + 1, No + 1, N3) we have an expression for %1}, ’

By manipulating the superscript notation of the repeated derivative function h we
‘can obtain an expression for the gradient. For example, if we wish to find the rate
of change in the x component of the force due to"a, Change or uncertainty in the z
location of the second distributed ma,ss,‘ we would alter the superscript notation of
Equation 3.30 to read Si, Ss, S3 + 1. :

3.6 Analysis of the Force Equations

In order to gain some insight into the 'attraction force between two distributed bod-
ies, one begins by expanding the force between two distributed masses, Equation .3.30,

up to the second order mass moments to include all the terms involving the moments
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of inertia for the two bodies. According to the formula, one is to take the summation

over the set of all non negéitive integers Nj, No, N3 such that N = N; + N, + N3 o

(Denoted VN,). For an expansion up to N = 2 and for S = 2, one expands the sum-. R
mations for the sets of N and S listed in Table 3.2. After expanding for the sets of N

and S up to order 2, and noting that the first order mass moments about the mass

center are all identically zero for Body C and Body D (Mm% :mﬁ{fﬁ =m

_one obtains the second order expanded form of Equation 3.30:

FC/D

0,0,0 '1,0,0

L o/Ce D/Dcp0,0,0 4 1. D/Dc2,00 | 1 D/Dc} 0,20
=m (m hioe + 5Myb0hio0 T 5Mose Mo0

1%0,0,0 2,0,0 ¢1,0,0

1 D/D¢ 1,0,0,2 . D/D¢},1,1,0 D/Dc1,0,1,1 | 5. D/Dc}1,0,1
+5My0, h’l,o,o T M, h’l:OIO T Moy hl,o,o +miy, h’l,0,0 +

1,.,C/Cc D/D¢1,0,0,0 1, .D/D¢},2,0,0 1,.,.,D/D¢1,0,2,0
-2m2,o,o mo,o,o h’s,o,o + 2m2,0,o_ h’a,o,o + 2mo,2,o h’a,o,o

1,,D/Dc30,02 - .D/D¢1.1,1,0 D/Dc 0,1,1 ,.,..,D/D¢}1,0,1
+2m0,0,2 h’a,olo + ml,l,O h’a,o,o + mo,l,l hazozo + ml,o,l h’a,o,o +

1,.6/Cof . D/Dc000 | 1, D/Dep200 4 1, D/Dc}0,20
2m0,2,0 m0,0,0 hl,2,0 + 2m2,0,0 h1,2,0 + 2m0,2,0 h1,2,0

0,0,2 "%1,2,0 1,1,0 '%1,2,0 0,1,1 '“1,2,0

+%mD/Dch0,0,2+mD/Dchl,l,O_*_»mD/DchO,l,l‘ +mfé'f°hijgzé)+

"l' C/Ce D/ D¢ 1,0,0,0 1. D/Dec1,2,0,0 1,,,D/Dc},0,2,0
3Mg 0.2 r(mo,o,o h1,o,2 + My 0.0 h1,o,2 + 2My2,0 hl,o,z

1,,,D/Dc},00,2 D/D¢1,1,1,0 D/D¢ },0,1,1 D/Dc },1,0,1
+2-m0,0,2 h’1:o:2 + miie h’1zo:2 + my1q h’l,o,z + M0, h’1:0,2 +

. C/Ce D/Dc },0,0,0 1,.,D/Dcp2,0,0 4 1,.D/Dc}0,2,0
’ ml,l,o mo,'o,o h’z,l,o + 2m2,0,0 h’2,1,0 + 2mo,2,o hz,l,o

l1,,.,D/D¢10,0,2 D/D¢}1,1,1,0 D/D¢},0,1,1 D/D¢1,1,0,1
+2m0,o,2 h2,1,o + m1,1,o hz,l,o + mo,l,l h2,1,o + ml,o,l h’2,1,0 +
C/Cec D/D¢1,0,0,0 1,.,D/Dc}2,0,0 1,,D/Dc}:0,2,0 -
mo,l,l (mo,o,o h1,1,1 + 2m2,0,0 h’1,1,1 + 2mo,2,o h1,1,1
1,1,0

1,.,D/D¢},0,0,2 D/D¢'1,1,1,0 D/D¢,0,1,1 D/D¢1,1,0,1
+2m0,0,2 h’1,1,1 +m h’1:1,1 + mo,l,l h1:1:1 + ml,o,lvh’1:1:1 +

¢/Cc | 2y D/Dcp0,0,0 | 1,.D/Dc}2,00 4 1, D/Dc}p0,2,0
ml,O,l (mo,o,o h’z,o,’l + 2m2,o,o h’2,0,1 + 2m0,2,o h’2,0,1

o1 =0)

| (3.31)'
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; -1,,.D/Dc},0,0,2  D/D¢1,1,1,0 D/Dc1,0,1,1 D/D¢1,1,0,1
+2m0,o,2 h2,0,1 + myio h2,0,1 + mo,l,.l h2:011 + Mo h2,0,1

Sﬁppose further for simplicity that principal axes can be chosen and both Body C'
and Body D can be oriented to align the principal axes in a parallel set of Qrthogonal

coordina_tes. Due to the choice of principal axes, the cross products of inertia are

~identically. zero for both Body C and Body D (mc/ G = mS/% = mP% =.0) . The

1,1,0 0,1,1° 1,0,1

second order expanded form of Equation 3.30 further reduces to:

G . 0,0,0 0,0,0 1,0,0 2,0,0

C/D _ : - _
z _ 1, c/C D/Dc1,0,0,0 D/Dc¢1,2,0,0 D/Dc1,0,2,0 D/Dc1,0,0,2 .
=2mgiee <2m hYoo T Mauochios +Moso hlon + Moeo hlos (3.32)

1.,C/Cec- D/D¢1,0,0,0 D/D¢}2,0,0 D/Dc¢ }1,0,2,0 D/D¢ 1,0,0,2
v+4m2,0,0 <2m0,0,0 h3,0,0 + m2,0,0 h3,0,0 + m0,2,0 h3,0,0 + m0,0,2 h3,0,0

1 C/Ce D/D1,0,0,0 D/Dec1.2,0,0 D/Dc1,0,2,0 | 4 D/De¢1,0,0,2
+A4m0,2,0 (2m0,0,0 h1:2:0 + My.0.0 hl,Z,O + mo,z,q h1,2,0 + -m’o,o,z hl,z,o

D/Dc1,0,0,2
0,0,2 '%1,0,2

N’ N N

+iMeos (2m§é,€°h§’:§:§ +mplaehies + meLeehs + m
- Equation 3.32 provides us with the ability to analyze the accuracy of the Newtonian
gravitational attraction force between two bodies. By looking closely at the informa-
tion presented in Equation 3.32, the first term is precisely the classical Newtonian
 attraction formula for two bodies located at a large separation distance compared to
'~ the size of the body:

i.cm m

)3/2+"'= o aat

FC/ D _ ‘ .

T _ c/cC, D/D¢1,0,0,0 S C,..D
G Mo00 Moo Proe + 07 = mm 2 2 2
(:L'cm + ycm + ZC’ITL
Thus, the remaining terms are correction terms to the classical Newtonian gravita-
tional force, which are neglected due to the assumption of a large separation distance

relative to the size of the attracting body.

From physics and a little calculus, it is known that the mass attraction force
between two spheres is ‘equivalent to the attraction force between two point masses.

Thus, the correction terms in Equatioh 3.32 must sum to zero for two spherical ‘.
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bodies. From symmetry, a sphéricai body has identical moments of inertia in each
principal direction and similarly, the second order mass moments are all equal. Body
C and Body D are represented as Symmetrical bodies by deﬁniﬁg‘ second order mass

moments to be equal, such that:

' C/Cc  —_ c/Ce C/Ce __ - ,yC/C
mz,o,oc - mo,z,oc _ mo,o,zc = .m, ¢ (3 33)
. D/De __ D/D D/De - __ D/D -
n’Lz,o,oC T mo,z,o? - 7np,o,2C = m, ¢
 and then substitute into Equation 3.32 to obtain:
C/D
d _ C/CcayyD/De  }0,0,0 :
G - mo,o,ocmo,o,oc hl,0,0 : R
11, c/ce,,,D/D 2,0,0 0,2,0 | }0,0,2
+ 2Mgoo My ¢ ’(hl,0,0 + h1,o,o + hl,0,0)
1, __.C/Ccpy,D/Dc 0,00 1 $0,00 | }0,0,0 o
My T MG 60° (hoe + A2 + ho2) (3 34)
+ c

4 3,0,0 3,0,0 3,0,0

lmg/qcmg/pc ( (hz,o,o + ho20 ho,o,z)
’ ‘ . 2,0,0 0,2,0 0,0,2
+ (h395 + h920 + h92?)

2,0,0 0,2,0 | },0,0,2
+ (h29s + heas +hes2) )

Since the mass moments of each Body are non-zero, the repeated derivatives must sufn -
to zero. In order to unlock the information contained within the repeated derivatives
contained Withih the correction terms in Equation 3.32 and quiation‘3.34, return .
to the definition of the sub- and super-scripted repeated derivative function A for
the distance between two points. The definition of the repeated derivatiVe function
was defined during the double Taylor series expansion of the function representing k
the distance between a point on the body and a point P. The distance between a
point P = (a,b,c) and a point on the body in Cartesian coordinates, Figure 3.1, is
given by Equation 3.1. The subscripts on the repeated derivative function h represent
dérivatives of the distance between two points, Equation 3.‘1, with respect fo x,Y, 2
and then evaluated at the origin, (r =0, y = 0, 2 = 0). The order of the subscripts
will match the order of the corresponding mass moment multiplier for Body C plus

one. For a Force in the z directiori, the order (1,0,0) is added to the subscript of the
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repeated derivative function h and (0,1,0) and (0,0, 1) are added for a Force in the
y, and z directions respectively. The increase in the derivative order as such, results
directly from the fact that the Force is the gradient of the gravitational potential
function. The superscripts represent the derivative with réspect to the point a,b,c
and then evaluated at the center of mass (Zem, Yem; 2em) of the second body, Body
D. The order of the superscripts will thus ‘match the order of the corresponding
mass moment multiplier forr Body D. To simplify the procedure for calculating the
~ derivatives, point P is chosen to be the center of mass of the second distributed Body.
We thus have an alternative‘répresentation of the repeated derivative function:
REE = (1)) Gk (335
and the superscripts on«v f are the orders of the derivatives with respect to z,Y, 2.
= Althldugh this representation hides more of the information, such that the subscript
“on the multiplying mass moménts no longer matches,: the superscript of derivative
 function f ,: the representatidn aids in computation of the derivative terms. _Using-
Equation 3.35, the required repeated derivatives for the double second order expanéioh
‘ aré Calcﬁlated. The origin of the coordinate system is placed at the center of mass
of Body C and the center of mass of Body D is located at (z,y,2) = (Tem, Yoms Zom)-

- The distance between the mass centers of Body C and D is therefore simply:

T= xtz:m + ygm + ng" ‘ | | ‘ (336)
Thé calculated repeated derivatives are then:

h0.0.0 ‘ = f100 = Tem

1,0,0 r3
h2.00 — p0:0,0 - £3,0,0 2%, Zem
»0,0 Bl — el = — -
10,0 — 300 f 15=7 9=3
‘ - 2
0,2,0 — /00,0 _ 1,20 _ Zem¥om _  oZem
hYo0 = hyoo f 15=27 3%z
2 .
CRh002 _ 00,0 1,02 _— . pZemZim Zem
hl,0,0 - h1,0,2 f 15— 7 3
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h§33 ' = fo% = 945”’—2'IL - 1050”—?ZEL + 2257
h§se = - h2YS = P = 9454"1—7’”" - 105% 315——%“"‘” + 45
h302 = h200 = f20? - 945—M° 2 - 105J3ﬂ —315———“’”ng o+ 45”"‘—;;!L
ho2S = fue = 945—"1”:17’1c - 630——m°'"y° + 45%ep
RS2 =ho20 = [ = opTemlimnm _ g5fmli _ms—’c';zfm ; ostp
hoo% = frot = ‘945””——“&””‘2‘1 - 630—“’:22 ’ + d5ip

(3.37)

Using the calculated'repeated derivative functions, we return to the cerrection terms -

in EQuation 3.34. The first two correction term repeated derivatives are identical:

(h200+h020 002) (hooo+hooo+hooo)

1,0,0 100 1,0,0 3,0,0 1,2,0 1,0,2
z x xr Z,
= 155 — 9%p + 15%afn — 35p 4 15%nn _ 3op

~

Collectlng terms w1th the same power of r, one can 81mphfy to find the leading
repeated derivative terms sum to zero for the case when each body has equal second

order mass moments (moments of inertia) in each direction.

(253 + 158 + he53) = (as+ 233+h°:3:2) - (3
_ —|—(1:cmy +$cm2 Tem
= 15 Zom TC;“ n 15 "
.. (@2, + 12+ 22)  + Zom
_ 15cm em T Yem cm»_15cm
v 7 5
Tem 4. Tem '
= 15722 ~ 1572
= 0

Similarly, one can algebraically show that the remaining derivative terms sum to zero -
for the case when each body has equal second order mass moments (moments of
1nert1a) in each direction:

(h200 RO20 4 hooz):() _ (3.39)‘ ,

300 300 3,0,0
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(hzoo hozo hooz)

1,2,0 1,2,0 1,2,0

(h2ss + Rz + hes2)

0
0

As expected, the correction terms sum to zero yielding the classical N ewtonian attrac-
tion force between two spheres, when each attracting Body has equal second order
‘mnass moments in each direction about parallel coordinate systems located at the mass -

centers.

3.7 Force Equation in Matrix Form -

For purposee of computational efficiency, it is often favorable te represent a sys-
tem of multlphcatlons and additions in matrix form. By using a linear algebra rep-
resentation, optlmlzed linear algebra packages can be used to increase computational
efficiency. To rewrite the equation for the force on Body C due to Body D in matrix
form, begin with the equation for the force, Equation 3.32, which has assumed that
the cross products of inertia for Body C and \Body~‘D are zero. Using Equation 3.35

one rewrites Equation 3.32 to obtain:

, “ZD amess ( MR+ mELR O e + mfgchm) - (3.40)
+imelss ( e 200 4 mB(Ee[P00 + mEjEe f220 +mé’é’3°f““) |
+2 mOC‘éC(;c ( gJéEO)cfl ,2,0 + szégcfa,z,o 4+ m.oD,éﬁch’oﬂ‘ mgégcfl,e,z)
iy (mEjse s mEle o e e o)
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Reaﬁranging the terms into a matrix, the Force on Body C due to Body D with the

cross products of inertia identically equal to zero can be written as:

~ -T - ‘ - -
%mg:é’(;‘)c 2f1,0,0 fs,‘o,o fl’2’07 f1,0,2 mgé,gc |
D0 Limgg | |aree gree pere el Impgeel
G - %m((;:é,(z‘)c 2f1,2,0 ‘fs,z,o f1,4,0 f1,2,2 m%ﬁ“ : B ( ) )
;%mgégc _2f1’0’2 fs,o,z f1,2,2 f1,0,4‘_‘ . _mg(/)gc i
_ AT : - - o
| %mgégc : (2](-0,1,0 f2,1,0 fo,s,o fo,1,2 Pm’gé’g? ' |
Fy(J/D %m%(if 2f2,1,0 f4,1,o fz,s,o f2,1,2 m;@‘(/)gc S i ’
G - img/‘éc(')c : 2f0’3’0 N il fo,é,z mgé,gc (342)
'_i v ‘g,égc- . T2f0,1,2 f2,1,2 f0’3’2. fo,%,cl_ _mgégc-
(1, c/c. ] TV F2 0,01  £2,0,1 0,2,1 003] [.,.D/De]"
: 5Mg 0.0 f f : f f M.0,0
zC’/D ‘ %mgé%c 2f2,0,1 f4,o,1 f2,2,1 f2,0,3 . ,rn2D(/)[0)c ( )
= [ o 3.43)
G %moc,é,(f;c 2fo,2,1 f2,2,1‘ fo,4,1 fo,z,s moD,é,[(ic
-%moc’é,c;c_ ;2]("0,0,3 vf2,0,3 f(‘),z,s‘ fo,o,s- _mgégc_

3.8 Application to Computational Methods
3.8.1 ;\Finite Element Discfetizatidn |

Proceed now to consider the situation where one wishes to discretize a large dis-
tributed body into a finite element representation. By using the information contained
within Equations 3.31, 3.32 & 3.34, one can quickly deduce criteria for which a finite
element represeritation will yield valid results. It is common practicé to represenf a.

“distributed body with several point masses and to then sum up the contribution due
td each element to obtain the gravitational attraction force for the entire distributed
body. These point masses are essentially approximating the finite elements of the

distributed body. For example, if the point masses are placed on equally spaced grid
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points parallel to the axes of a Cartesian- coordinate systeni, the point masses will
be approkimating a block-shaped finite elénient. : It is already well known that by
increasing the number of point masses representing a body, a more accuraté a‘upprox-‘ |
‘ imation to the actual gravifational attfaction force can be calculated. By increasing
' the number of points representing a body, the moments of inertia for the finite el-
ement which the point mass is approximating will approach zero in the limit. It is |
- clearly seen by Equations 3.31, 3.32 & 3.34, that as one reduces the magnitude of -
'f'che finite element rhoments of inertia, the correction terms to the classical Newtonian |
gravit_ational attraction force will approach zero. Thus, for a point mass summation
vaf‘)prci)ach, where the correction terms consisting of the moment of inertia have been
neglected, the grid size must be small compared to t:he separati'on di_staﬁcé to reduce
the magnitude of the neglected correction terms. ‘Furthermore, Equations 3.32& 3.34,.
indicate that one can eliminate correction terms by intelligently choosing the géomet'7 k
- ric shape and orientation of the finite elements. Suppose an element is chosen such
that the moments of iﬁerti‘av are equal in all three principal directions and the cross
products of inertia are zero. This is the case for example, when a sphere or a pérfect
cube is chosen. In the case of the Sphere, as already showri; all of the correction terms
- collapse to zero. For'the cube it will be shown in Seétion 3.10 that a cube is similar
to a sphere to the fourth order. For a point mass summation approach, by choosing
symmetric equal spacing “of a Cartesian grid, the point masses are representing cubical
finite elements. Hence cubical finite elements are nearly ‘equivalent to using a point
mass summation approach as long as both grids for. each attractvin‘g body are aligned
along the directions of a common Cartesian coordinate system. Thus, ’inv order to
calculate accurately the gravitational attraction force between two distributed bodies :
using a point mass summation approach, the points must be placed equidistant apart
in the coordinate axis directions. This can become problematic when the distributed
body has one dimension that is much larger than the smallest dimension. In éddition,
the principal directions of the grid used for each object must be the same. This can
become restrictive if one desires to rotate the grid directions of one body to maximize
the number of equally space grid points that are within a surface that is not ‘pa.rallel ‘

to a principal direction. To use a point mass summation appi‘oachsfor bbjects which
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Figure 3.5: Common Cartesian grid direction for two bodies.

would require gfids aligned in different directions for each body, a higher density of -
points would be required. For example, Figure 3.5, indicates a situation where the
limitation of retaining common grid direétions in each body would require ‘adl(iitional
_points to obtain a valid result using a point mass summation apprOach. It can be
clearly seen that Body C is well represented in the discretizatiori, whereas Body D is

~ not.
- 3.8.2 Point Mass Summation Limitations
There are four criteria that must be considered when using a point mass summa-

tion approach to calculate the gravitational attraction force between two distributed
bodies: v v

1. Assumptions of ideal geometry and dehsity distribution will lead to an uncer-

tainty between the point mass model and the physical system.

2. Large number of points required to reduce moments of inertia and hence mag-

nitude of correction terms.

3. Point mass locations must be equally spaced in all three dimensions. (Cubical

finite element repi‘ésentation.)

4. Grid principal directions must be common for all the distributed bodies.
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For simple geometric test cases, these criteria are often not problematic. However,

these requirements can become restrictive for instances involving:

e Materials with unknown variations in the density distribution.

Components not manufactured with tight fabrication tolerances.

'lLarge aspect ratio bodies. (Unable to increase the grid size in one direction,

while keeping grid spacing in other directions fixed.)

Large distributed bodies requiring lots of points for accuracy.

Irregular shaped bodies.

e Simulations using non-cubical finite elements.

~ In such Cases, wheré the restrictions of the point mass summation are limiting, it
is useful to utilize the double Taylor method presented in Equa.tionv'3.30or Equa-
tion 3.31. Although the restrictions may not at first appear problematic; there are
vk several Situatione which arise in common practice that become problemati‘c for accu-
rate results using a point mass summat'ionA approach. Consider for example, a high
~ precision sensor on a satellite, for which a gravitational mass attraction analysis must
be performed Large aspect ratio bodies can be quite common, which include satellite
- wiring and plumbing. For wires and pipes, it is difficult to increase the number of
points-in all directions equally whlle dlscretlzmg the ob Ject into finite elements. Typi-
cally, one would want to increase the number of points in the d1rect10n along the wire,
while keeping the number of points in the cross sectional directions ﬁxed.‘ Yet, this
procedure violates the criteria outlined for which a point mass summation technique
will yield valid results. A satellite is also composed of many complex—shaped compo- |
nents. If a gravitational mass attraction analysis is to be performed to a high degree
of accuracy, then a large number of pomts could be required. By usmg the double
Taylor method, it is possible to reduce the overall number of pomts If the double
Taylor method is applied through a second order expansion, the ob Ject_ may be repre-
sented by the mass and moments of inertia, eliminating the need for discretization. In

eddition, uncertainties associated with material properties and fabrication could be
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included 'by utilized measured parameters for the mass properties. If a discretization
'method is used to represent:the satellite using finite elements for multiphysics simu- -
lations, it is often desirable to use one common grid for all the simulations. However,
solid objects are usually discretized using tetrahedrons or block elements rather than
cubical elements. If a tetrahedron rhes_h is used, then the criteria of equally spaced
grid points in all directions will be violated, requiring the use of the double Taylor'

method to achieve accurate results.

- 3.9 Errors Due to Non-Exact S'ymmetrica.l Body

In Section 3.6 after assuming that the second order mass ‘mome‘nts were identi'—:
cally‘ equal, Equation 3.33, it was shown that the correction terrﬁs to the classical'
\ Newfonian attraction force sum to zero. This resulted in a :col'l»apse of the double
Taylor equations to the equivalent of computing the attraction force between two
poiht masses. However, in practice it is often difficult to manufacture an 6bject with
identical mass moments (moments of Inertia) in each principal direction. It is there- _
fore of interest to determine the error associated with using a point mass attraction
formula if the attracting body is not perfectly symmefi‘ical, Consider ‘the case wh'ere'
the second order mass moment in the z direction is slightly larger than the other two
principal direction second order mass moments: ‘

C/Ce __ C/Cc —_ - C/Cc C/Ce  — 4 C/C
m210,06 6m2,0,OC - ’.'7."0,2,2c - ’rr"(),(),zc - m2 ¢ ) (344)

For simplicity, further assume that the secondvdistr"ibuted:body, Body D, is a perfectly

symmetrical body, such that second order mass moments are identical.

D/Dc . —

mP/Pe — qP/De = mp/2

D/Dc -
2,0,0 0,2,0 m;,

i

Begin with the double Taylor equation for the attraction force in the z direction,

Equation 3.32, where the cross products of inertia are zero for both attracting bodies.
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‘Plugging in the chosen geometry into Equation 3.31, one obtains:.

c/D
xr

.:G‘

_ c/C. D/De¢ 1,0,0,0 . . }
- mo,o,ocmo;o,ochl,o,o “ . ,(3.45)

1. .D/D c/Ce | c/c 0,0,0 - C/Ce 1,0,0,0 C/Cc1,0,0,0
+ Emo,o,oc ((mz ‘+ 6m2,o,oc) hs,o,o +m, chl,z,o +m, chl,0,2

— 21 C/CcnyD/Dc}0,00 | 1 D/Dc C/Cc 1.0,0,0
= Myo0Mpo0 hl,o,o + 2M0,0,0 6m2,o,o hs,o,o

Again, the last term can be viewed as a correction term to the classical Newtonian
gravitational attraction force between two point masses. If the second order mass
moment is larger in either the y or z direction for the chosen slightly asymmetric
,geOmetry, a similar expression can be obtained. To surlnmarize‘, for the three different. ,
cases where each mass moment in the z, y, or z direction 1s slightly larger, the

attraction force is:

C/D o o .
z _ ¢/C D/Dc1,0,0,0 } . o
G - 'mo,o,ocmo,o,ochl,o,o + - . _ : (3'46)
4 . ' . '
1,.D/Dc8inC/Cc 0,00 ¢ C/Ce __ C/Ce — 4 C/C
m <om °h vlf ;mz,o,oc 6mz,o,oc — 't ¢

2°"70,0,0 2,0,0 "73,0,0

1, D/D C/Ce0,00  if 2nC/Ce . KrC/Ce — wnC/C
< 2m0,0,066m0,2,06h1,2,0 lf ""7‘0,2,0c 6m0,2,oc - m2 ©

1_.D/D C/Ce },0,0,0 : C/Ce __ C/Ce. C/C
L zmo,o,océmo,o,zchl,o,z if mo,o,zc 6m0,0,2c - mz ¢

‘Using the information presented in ‘Eq'uation 3.46, one can easily determine the sen-
sitivity to the magnitude of the attraction force due to a slight asymmetry of a
symmetrical body. | | | » }
To calculate the magnitude of the correction terms, a simple test case is chQSen'
consisting of two nominally cubical masses. One Side of the central atvtrac'ting‘ mass,
| Body C, is manufactured to be slight'ly; different in lehgth than the other two di-
mensions. Let the side in the z direction to be slightly larger by € as presented in
Figure 3.6, resulting in a change of the mass moment. For a simple brick-shaped ob-

ject, the mass moment terms can be easily calculated by hand. If a constant density
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A y’
dy s
c - X’
: Body D
- V4
b X -
. s
' /z - Body C
: -
a+e

- Figure 3.6: Slightly asymmetric'cent_ral Body C and symmetric Body D.

rectangular bI'le of dimension a,b,cinthe z, y, z d1rect10ns respectlvely is conSIdered

‘thé mass moments are found to be:

- mfl% = ///o a:yzkda:dydz ,

-£ | J—1
2572

0 1fzorjork1sodd

e _ ) ' 3.47‘
i,k ¢ 8(2) +‘1(%)J+1(§)k+1 otherwise | )
g (E+1)(G+1)(k+1) Twi

Récognizing that mS/% is the mass of Body C, Equation 3.47 can be rewritten to

remove théderisity term o° to produce:

0 - ifiorjorkisodd, -

c/Ce  _ o E :
Mgk = (%)l(%)J(%)k C/Ce ; -~ (348)
. mm movo,o . otherwise ‘

Using Equation 3.48 and the repeated derivative functions listed in Equation 3.37,
the correction term magnitudes in Equation 3.46 can be computed. However, before
~ actually computing a value for the correction term, it is useful to gain some intuition

on how the results should behave for various locations of Body D. By looking closely
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Flgure 3 T Repeated derivative function h3%o

in the z,y plane.

at the correction terms in Equation 3.46, one should observe that the location depen-
' dency information is all contained within the repeated derivative function. For an :
object, the mass and the variation of the second order mass moment can be considered
- fixed. The remaining term is only the repeated derivative functlon which depends
on location. Thus, the behavior of the correction term magnitude will behave hke the
repeated derivative function. Figure 3. 7 isa plot of the repeated derivative function

h>%% in the z,y plane.

3,0.0
By observing the information provided in Figure 3.7, it is seen that the largest
‘positive value of the corre(‘:tion‘ term due to the additional length in the z-direction
will occur when the radial distance is aligned along the z-axis. Selecting a location for
the Body D to be along the z-axis, the point mass attraction force in the z-direction
and corresponding correction term were calculated._The value used for each variable
in the calculation is found in Table 3.3. In the ealcuiation the mass was assumed con- |
stant, such that an increase in the z-direction length of Body C and hence a change

in the volume, would alter the density. Using the values presented in Table 3.3, the
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Identifier ‘ Description . Value Units
. a Nominal z-direction length of Body C 40 [mm)]
b Nominal y-direction length of Body C 40 [mm)]
¢ Nominal z-direction length of Body C 40 [mm)]
e Error in z-direction length of Body C 0.1 [mm]
s Nominal cube side length for Body D 40 ~ [mm]
z,Y,2 Body D mass center location relative (60, 0, 0) [mm]
S to Body C .
mg/Ce Body C mass ‘ 1.37 [kg]
mp/De Body D mass 1.37 [kg]
¥2,0,0

§mC/Ce Change in Body C 2" order mass 0.9145 [kgmm?]
- moment due to € : o '

Table 3.3: Input for non—symmetrical body calculation.

boint’ mass attraction force on Body C due to Body D in the z-direction was found to ‘
be FS/P = 3.4788 x 1078 N with a correction term of §F/P = 1.9351 x 10-'X N. This
results in a total force of F</P = 3.4808 x 108N . The correction term magnitude
-is small compared to the‘point mass force, but in situat'i‘ons where a precise value -
is required, the contribution can become significant. 'Cvonsider_ for example the LISA
mission, where the static value of the gravitatione,l attraction force must be kept below
5 x 10~1°m/s? for the entire satellite [42]. If there are approximately 25 components
within the entire satellite which exhibited a similar geometrical error, the mass at-
traction disturbance budget would be exceeded if the correction terms were neglected.
This could easily be the case where perhaps 25 fasteners were slightly loriger than
expected, but still within manufacturers specifications. The error associated with
neglecting the correction terms is especially problematic if the mass attraction anal-
ysis had assumed the ideal geemetry and the actual deviation from the geometry was
unknown or assumed to be ideal. For this calculation it is important to note that the
chosen geometry results in the attraction force between a slightly asymmetric body
_ina sihgle direction and a purely symmetrical body. If an additional asymmeﬁry is
added to the Body D or additional asymmetries are added in other directions, addi-
tional correction terms will be generated. In addition, if a body is discretized using :

a slightly asymmetric grid, the neglected correction terms for each element can sum
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- to a significant error if a point mass summation were used. In cases, where precision
s requ1red the magnitude of the correction term can be further reduced by placlng
more strict requirements on the allowed dimensional variation €, OT by 1ntelhgently

choosing thevlocatlon of Body D.

3.10 Observation: A Cube is Similar to a Sphere

‘ 'Using the information presented'thus far, it is interesting to note that a Sphere
: and a cube exhibit similar gravitational attraction properties. . In fact, a cube of
, homogeneous derisity and a sphere of homogeneous density exhibit identical gravi-
tatjonel _attraction 'p'roperties through a third order expansion. To show this, recall
Equation 3.48 for the mass moments of a rectangular brick-shaped object, where it
was found that the mass moments m 1% are identically equal to zero if i or § or k is
odd. Thus, the third order mass moments for a brick-shaped object are identically
equal‘ to zero. For a cube, each side of the brick-shaped object are identical in length.
As a'result, the moment of inertia in each pr1nc1pal dlrectlon and similarly the second
order ‘mass moments are all equal In Section 3. 6 it was shown that when such a
condition exists, namely all the moments of inertia are identical, then the attraction
equations simplify to that of the classical Newtonian attraction equations. Thus, for
a homogeneous cubical shaped geometry, the attraction force through the th1rd order

expans1on is identical to the classical Newtonian attraction equatlon

311 Variations in Density

Although during the derivation of the attraction force between two distributed
bodies, a constant density distribution was assumed, a variation in density throughout |
the body can still be accounted for when using Equation 3.30. By looking closely at
the force equation due to two distributed bodies, it is noted that 1nformat10n regarding
’ the mass distribution is all contained within the mass moment representatlons Thus,
the solution to incorporating variations in density into the attraction force calculatlon

lies within the determination of the mass moments. As described in Section 3.2, two
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basic approaches exist: a physical measurement appfoaCh and a modeling epproach. ‘

The first solution utilizes physical measurements of the moments of inertia to
" account for the unknown density variation. By computing the attraction force using |
measured moments of inertia of the component in Questien, variations in density as
well as geometric variations will be included in the attraction calculation. As a result,
the exact density distribution within an object need not necessarily be known in order
to determine the actual gravitatienal attraction force. In fact, by using measured
quantities in a Taylof ‘Series representation of the gravitati-onal mass attraction, the
' iny unknown uncertainty in the‘ calculated attraction force lies within the neglected

higher order terms.

The second solution involves a modeling approach, where either the density dis-
tribution throughout an object is known or can be described .‘using:a polynomial
| ‘ representation. Knowledge of a variation in density within the body can be included
" in two ways. The first is on a finite element level during the computation of the -
mass ‘r’noinents for each individual tetrahedron. When the distr'ibuted mass is bro-
. ken into individual tetrahedrons to calculate the volume moment, the density of the
tetrahedron being computed can be multiplied by the volume moment, before the
result is summed to _determine the volume moments for the entire body. This method
“allows for single point variations within the density, since single tetrahedicns can be
selected tor have a different density than the rest of the volume. Although s‘ingle point
variations within the density may not be a likely occurrence, the method allows for
“voids or stress hardened areas near machined surfaces/holes within the structure to
be included. | ' | |

The second method for incorporating a variation in density within the mass in-
volves a pclynomial representation for the density. First we return to the fundamental
derivation of the attraction force, where the negative gradient of the gravitational Po-
tential was applied. The Potential at point P, Equation 3.2, modified to explicitly

denote a non-constant density throughout the volume occupied by the distributed
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body is:

" U(P) = G/// o(z,y, ) f(z,y,2)dzdydz - (3.49)
A , J } ,
‘Again, one takes the negative partial'derivative of the Potential with respect to the
variable z to obtain the attraction force in the z-direction. By applying the chain
rule due to the non-constant density term; a modified form of Equation 3.3 for the

attraction force is obtained.

,.—FGy(nP) =/// o’(z,y, 2) 0%z y, 2y dr dydz +
: 1 '

///acl’o’o(vx,y,z) f(z,y,2) didydz : : '(3.50) |
The comma-delimited sup_erscript notation on the density is again used to denote the
derivative brder with respect to,the,ﬁi‘st, second, and third coordinates (x,y,z). By
using our insight of the resulting force equation due to two distrjbuted bodies with
constant density, it is again noted that information regarding the mass 4distributior‘1'is
- all contained within the mass moment representations. Knowledge of a variation in
density within the body can then be included 'ivn the mass moment terms. Assuming
a polynomial representation for the density can be determined, the modified mass
“moments can be calculated. Recall the definition of the volume moment and mass

moment, Equation 3.7, and Equation 3.8, again modified to explicitly indicate a non-

M5 = /// 'y 2 dr dy dz
v o
mei%e = /// aé(f,vy, 2)ziy’ 2Fdz dy dz
' v

constant density:
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For a simple example, ‘supp(')se that the density can be defined as:
o(z,y,2) = pr+vy+&z+o, o (3.51) -

After substituting the expressmn for the den31ty as a function of spatlal coordinates,

we see that the mass moment due to the density variation becomes:

mff% = /// (z,y,2 :Eyzkdxdydz
v=‘ ///u:v:vy demdyd2+///uy:vy zkdxdydz-l—
// §z:v Y zkdxdydz+///ao:vy zkdxdydz

= MC/CC +VMC/C° gMC/Cc + o/ - (3.52)

1+1_7k z_7+1k ‘LJk+1 i,7,k

h Thus, depending on the representation of the density as a function of poSitidn; the
mass moment representation-in Equation 3.30, can be ,Subétituted by a weighted
summation of highér_order volume moments and the constant density mass moment.‘
"For the second term in vKuation 3.50, which contains the derivative of the density
function, we apply a similar technique for the. mass moment representation, where

--the derivative of the density is used.
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Chapter 4

Mass Property Measurements for

Mass Attraction Calculations

' Due to material property limitations and machining technology, it is nbt feasible
to manufacture something which is perfectly homogeneous in dens1ty or geornetrlcally
exact as designed. Geometrical imperfections can be mlnlmlzed by tedious measure-
ments and with modern machining methods, but there will always exist a deviation
- from the desired ideal final product. Material density variations can be reduced by
*choosing appropriate materials, but the density distribution within an object will
ﬁéver matc}_i an ideal homogeneous distribution. It is not practical nor feasible to
manufacture a part which has a completely homogeneous density. For example, typ-
ical inhomogeneities for steel can be on the order of a part in 103. In addition, there
‘may be density variations due to the machining process,l such as localized stress hard—
ening. Brass and BeCu typically have a density inhomogeneity within the range of a
part in 10% to a part in 10°. Some ceramics can even have a density inhombgeneity
as high as several percent. ' | | |

These real-world variations in geometry and the density distribution create an
uncertainty, which may lead to an unacceptable error in gravitational mass attraction
calculations. Consider for example the Disturbance Compensation SYstem, DISCOS,
for the first drag free satellite. For DISCOS, the beryllium oxide'proof'mass housing
was expected to have better than 0.1% density uniformity [15], such that the total
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contribution to the drag-free disturbance budget due to mass attraction effects was
on the order of 20 %. Yet, the manufacturer could only gua.rantee the material to be
" manufactured with a 0.3% density uniformity [16]. The result was an increase in the
mass attraction budget for the proof mass housmg to over 40 % of the total drag-free
dlsturbance budget [17], [53]

For drag—free satelhtes the assoc1ated uncertalnty in the mass propertles and
,geometry create an uncertamty in the mass attractlon calculations, which may lead
to an unacceptable contribution to the disturbance budget and hence a reduction i in
the drag-free performance. One method>to proceed in the satellite design process is
to place stringent requirements on the density distribution within a component to-
ensure that the mass attraction noise budget allocation will not be exceeded due to
the associated uncertainty. For high‘-précision drag-free references; the requirements
~of an ideal geometry or homogeneous density distribution can easily force the use of

- special materials or manufacturing processes.

In order to reduce the uncertainty in the mass attraction calculations associated _‘
with idea,lized geometry and density assumptions, it is desired’ to physically measure
the attraction force. The‘gravitational massAattfaction force between the drag-free
reference mass and the surrounding satellite can not be easily measured directly’.v Yet,
as shown in Chapter 3, the mass attraction formula through a second order expansion
consists of the measurable quantities of mass, mass center,‘ and moment of inertia
‘about the mass center. Thus, the gravitational mass attraction force on the drag free
reference due to the satellite can be indirectly measured to the third order, which
includes the unknown density inhomogeneities and geometry variations. The only
unknown uncertainty in the calculated attraction force then lies within the neglected
higher order terms. The geometrical and density variation errors do not contribute
~ significantly to the remaining higher order terms and may be modeled, requiring
~ only ~10% accuracy to achieve better than ~1e-5 overall accuracy._ As a result, the
“exact density distribution within an object and the geometry n'eed,hot necessarily be
known or measured in order to determine the actual gravitational attraction force.
Variations in density as well as geometric variations will be automatically included

in the calculation by utiliZing the measured mass properties.
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Measurement

Mass Property Precision | ‘Notes
Mass 1 part in 10° For 1kg object.
' ' Reference: [14]
Mass Center ~100nm  Reference: [9], [12]

Moment of Inertia ~ 1 part in 10* For 2.25kg object.
SR N : Reference: [54]

Table 4.1: State of the art mass property measurement capabilities.

In order to predict the satellite system gravitational mass attraction force and force
gradientsk, physical mass prbperfy.measurements are necessary. T}ie ‘cofrespohding
prbperties of mass, mass center, and moment of inertia must be precisely determined
for the proof mass and satellite components. The remainder of this chapter will
therefore provide an overview of mass property measurement techniques.' Table 4.1
~ prévides an initial overview of current state of the art mass firoperty measurement

~ abilities, which are discussed in the following sections.

4.1 Mass Measurement

The physical property of mass is a fundamental property associated with all ob-
jecté and the measurement or quantity of mass is required for a number of every day
applicatidns,‘- including international commerce. As such, the unit of mass is defined
by international treaty to establish a consistent set of measurement units. The unit
of mass in the International System of Units is the kilogram and the value is defined
with reference to an object known as the International Prototype Kilogram (IPK).
A va‘riety'of measurement techniques exist for mass measurement and the ability to
measure mass is at an unprecedented precision. In fact, the National Institute of
~ Standards and Technology (NIST) offers mass calibration measurement services [45] |
with an uncertainty of 50 X 10~°kg at 1kg and replicaé of the IPK have been mea-
sured to nearly 1 x 10~°kg using the best balances [14]. Thué, the use of an object’s
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mass for an indirect measurement of gravitational attraction force will not hinder the

overall precision of the attraction force measurement.

Required Precision

Whenever‘performing measurements, it is often helpful to know the answer to the
question "how good does the measurement need to be?”. One can noti justify the
additional expense or com‘plekity to measure an item to state of the art precision’if
an approximate value is ”"good énough”. For mass r_neaéurements it is however not
difficult to achieve a high precision with regular laboratory grade equipment. The
mdss of an object is in the first term of the gravitational potential Taylor series expan-
sion, which is the standard NeWtOnian,point mass attraction force, F = GM m/r2. In
- ,ofder‘to utilize measured values for the mass in the gravitational attraction analysis,
the error associated with the mass measurement is directly proportional to the error
in the attraction prop’erties.: The actual required precisioh for the mass measurement
will depend on the separation distance between the vtwo objects as well as the relative
| ‘magnitude of the mass for each object. In addition, if the system is composed of a_
number of objects, the required precision on-eachv'object Wili neéd to be increased
in order to achieve the overall desired precision on the gravitational mass attrac-
tion properties for the complete system. For gravitational wave dbservatories suéh as
'LISA, the dynamic stability of the system is also of importance.. Stebbins et. al [56]
estimates a combination of 0.03 kg mass error at a 0.05m separation distance with a

1/2

displacement stability of 3 x 107° m/Hz!/2 is necessafy to meet science requirements

for LISA.

4.2 MaSS Center Measurement‘

Since the mass centet location of an object is not a fundamental SI unit, the ability
tQ measure the mass center is less understood than the fundamental measure of mass.
Still, the location of an object’s mass center is a fundamental mass propérty. The
mass center for example is the key reference point for an object when analyzing the

statics / dynamics of an object. In theory, the mass center for a homogeneous density-
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“object of perfect geometfy can be calculated and suffices for typical calculations in -
statics/dynamics. For 5 three-dimensional object, a penduldus technique is typically
used to determine the mass center offset. Such a measurement technique is capable
-of determining the mass center location to levels g’reater‘ than approximately 1um.
Conklin [9] has shown that a velocity modulation technique can be used to measure

‘the mass center location of spheres to state of art precisioh,on the order of ~ 100 nm.

Required Precision

For an indirect measurement of the gravitational attraction force, the equations:
require pdsitiori location for the objecf.' In addition the equations are simplified by
cho‘osing the coordinate axes coincident with the object’s rhas_s center such that the
‘moment of inertia for the object. is about the mass center, consistent With'standafd
definitions. For the purposes of this work, it is assur'ned that the position location for
an object is that of the object’s mass center and the current state of the art precision
is sufficient. ‘.Consider for example the simplified point mass attraction force between
two objects each of mass 1 kg, separatéd by 0.1m. The gravitational attraction force
is on the order of 6.67 x 107°N. An uncertainty of 100 nm in the location reSﬁlts in an
associated uncertainty in the attraction force on the order of 1.3 x 10~5 N for better
than 2 parts in 107 order of accuracy on thé’point mass attraction force. For Triad- -
. 1/DISCOS, a position uhcertainty of 0.5mm was allowed for a part with mass of
about 1g located within the DISCOS electronics [22]. For LISA, Stebbins et. al [56] -
utilized an estimated displacement sensitivity of 3 x 107°m/Hz"/2 to establish the

r.equirementé on the mass attraction disturbance levels.

4.3 Moment of Inertia Measurement
The moment of inertia is also a fundamental mass property parameter associated i

with an object. The moment of inertia is typically important for rigid body rota-

tional dynamics. Rotational motion is present in a number of every—day industries

from automotive to aerospace to information technology. Still, the moment of inertia
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measurement as compared to the other mass property measurements is the least un-
derstood. Often a rough approximation for the moment of inertia is sufficient for a
number of apphcatlons Typical moment of inertia measurement dev1ces are capable
of 1 part in 10% accuracy and current state of the art technlques are approachlng
capabilities of a few parts in 10%. Space Electronics LLC provides current state of the
art moment of inertia rneasurement devices [54], which are capable of an accuracy of

1 part in 10* for objects on the order of 2.25kg to 20 kg. These instruments are the |
‘most accurate commercially available 1nstruments in the world today and are two to

three tlmes more expensive than the same 1nstrument with a 1 part in- 103 accuracy :

Required Precision

For vgra’vitational mass attraction measurements utilizing measured values for the o
mOment of inertia tensor, it is difficult to prov‘ide' a direct answer to the question

of " how good does the measurement need to be?”. Although the moment of inertia

tensor is the least understood of the mass propertles one ‘would like to know if the .

state of the art precision is good enough. In Chapter 3 it was noted that the first
term in the series expansion is 81mply the point mass attraction term and the’ hlgher
order terms were therefore corrections due to non-symmetrical. shaped objects. The

terms 1nvolv1ng the moment of inertia tensor are the first terms to include the effects

of a non point mass object. In fact, it was shown in Section 3.6 that the second order - “

terms sum to zero for the case when the object 'hasA identical principal moments of
 inertia. Thus, the required precision on the inertia will be highly dependent on the
ratio of the minimum to maximum principal moment of inertia. :In general, the more
' symmetrical an object is in terms of the moment of’ inertia Vellipsoid the more relaxed
the accuracy requirement may be for the moment of inertia tensor measurements.

To gain some 1n81ght into the required precision on the moment of inertia mea-
surements, recall the prev1ous example in Section 1.3.3 between two spherical shaped-
objects (Figure 1.4). The spherical shaped objects in the example contained inter-
nal voids, which is comparable to an object with an irregular density dist_ribution or

‘where the object has the maximum principal moment of inertia about 10% larger

than the minimum principal moment of inertia. For the example in Section 1.3.3,
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the second attracting body was located along the direction of the maximum 'princi—'v
pal moment of inertia, R =3r,2. By incorporating the inertia values into the mass
attraction calculation the result was a difference of about 3.2% from the point mass
- solution.  Now consider the case where the second attracting obJect is pos1t10ned
along a different. principal moment of inertia d1rect10n For the two obJects in this
example, the intermediate and minimum principal moments of inertia are about the
same magnitnde; For the case where the second object is located along the minimum |
principal moment of inertia, R = 3r,%, the difference between thelpoint Inass attrac-
tionand the double Taylor method, 100% x (Fp — FDT) / FD'T‘, is about 1.6 %. Thus,
the actual orientation ‘of each object determines the magnitude of the contribution
to the mass attraction calculation. Intu1t1vely this makes sense, as the moment’ of |
inertia is deﬁned by the mass distribution. As a result, the required precision on
the rnoment of inertia tensor will also be a function of the actual orientation New
- cons1der an actual uncertalnty in the moment of inertia tensor measurement If the _
two-part- sphere in the example has a maximum moment of inertia that is 1 part in
10* larger, one finds a change in acceleration of 1.5 x 10-13 m/s?, or about a 2.8 in 10°
accuracy. If the LISA static mass attraction disturbance requirementfor the entire '
spacecraft is 5 x 107%m/ s2 [56], then for thisexample a part in 10 accuracy for the

moment of inertia will result in about 3 parts in 10* accuracy on the acceleration.

4.3.1 Measurement Techniques

A moment of inertia measurement apparatus typically attempts to produce a
pure rotation about one degree of freedom. The measurements of rotation can have
; uncertainties when there are signiﬁ(jant other degrees of freedom. A number of mea-
surement techniques exist for producing the rotation about a single degree of freedom.
in order to obtain the moment of inertia. ‘Devices include for exarnple wire supported
torsion pendulums torsion rod platforms and air bearing platforms. A comparison
of various measurement technlques is presented in Table 4.2. The current state of the
art measurement apparatus manufactured by Space Electronics LLC ut111zes an air

bearing technology for generating the pure rotation necessary for the measurement,
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Methods

Challehge,s -

: Advantages
Three-Wire Pendulum Simple Unconstrained
' ' swinging modes
Three-Wire Pendulum Simple 7 Damping/Friction’

~ with Pin Bearing

Fjve;Wire Pendulum

- Torsion Rod and Platform

Air Bear,ing‘ Platform

« Air Bearing and Torsion Rod

- Constrained swinging

modes

Less expensive than

New technique

air bearing platforms -

Current state of the
art accuracy

Torsion rod provideé
stability

Requires restoring
force. Expensive

Expensive

Table 4.2: Inertia measurement techniques.
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4.3.2 Determining the Inertia Tensor

~ As already mentioned, measuring the moment of inertia involves producing a pure
rotation about one degree of freedom. The moment of inertia for an‘eb ject is however
a second order tensor quantity. An apparatus producing a pure rotation can therefore
only determine the radius of gyratien, or rather the instantaneous moment of inertia
ebout' the rotation axis. Thus, in order to obtain the full inertia tensor ellipsoid,
" measurements must be made about multiple axes of rotation. '
The complete inertia tensor for an ob ject, I , has nine components I;; six of which
are independent. Consider an object which is rotating about the unit vector 4. The

instantaneous inertia about the direction of & is a scalar and is given by:
I=a-T-a : @)

Thus, with n measurements of ™ along n unique directions, Mg, the systern of n

equations is formulated:

W7l [Wa2 2Mg; Mgy 2Wg gy Mg2 2Wg, (>1)a3 (a2 : Im
»(2) | (g2 2(2)q, g, 2 g, Dgy @g2 2QgyPgy; @g2 Ixy
(3)]. _ (3)0,% 2 (3)a1v(3) as 2(3)a1 (3)(13 3) a%\ 2 (3)q2 3) as 3) ag ‘ zz

‘ ‘Iyy

’ - . - ’ N _ ) ’ I
_(n) I -(n) a? 2 Mgy Mgy 2Mg, Mg, . (n)ag ) (n)a2 (g4 (")a§ J _Iyz
. . zz
C(4.2)

where z,9, 2 »represent the body fixed axis directions. Rewriting Equation 4.2 more
compactly as ™7 = Afij, the solution to these n equations.in the six unknown inertia
components can be solved by least squares formulation so long as there are six or

more independent directions of rotation:
CI; = (ATA)TAT™T (4.3)

The inertia tensor I is completed by noting that the tensor is symmetric. v_Fu'rther'mor'e,
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the covariance matrix for the least squares estimate is given by [57]:

Pisy = (ATA)'MSE | 4

where the mean square error of the estimate, MSE, is a function of the residuals

from the least squares estimate:

(n)I‘T ((n)I‘ —AI—”)

m-—-n

(4.5)

MSE =

where m and n are the number of measureménts and the number of unknowns re--
spectively. The matrix diagonal, diag(PLsE), produces the covariance elements afj,
corresponding to the inertia tensor corﬁponents, I;;. The standard deviation is then
the quare—foot of the elements. The resulting standard deviatibn tensor is denoted

by ¥1sE, or in matrix form:.

' Ozx Ogy da:z‘ v
[Erse]l = |0y oy oy| . (4.6)

Oz Ozy Ozz

Once the inertia tensor is determined for the o‘bje(b:ti in the body ﬁxed coordinate -

- frame, which potentially may have been arbitrarily defined, the principal moment of
inertia values, Ip,;, Iy, Ipsy, are determined through anveigenvalue problem. The
eigenvalues are the principal moment of inertia values and the eigenvectors, é;, és,

€3, define the directions for the principal moment of inertia, such that:

Ly=é-T-é (4.7
Ippy =2+ 18 (4.8
Ipgy=63-1-¢; (4.9)

Additionally, the eigenvectors create the columns of the required transformation ma-

trix from the body frame to the principal axis frame, TF/B = [él éo 'é3], such
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- mg
(a)
;Figuré 4.1: Torsion‘pendulum free body diagram.
that:
[1,] = [TP/‘B]T[I].TP/B s - @)

The rotatiori thé,trix is then used to transform‘the standard devi@tion matrix to the

principal axis frame:

(5] = [T7/7)" [Spsg) TF® i RNCRY)

4.4 Meyasurements Using a Torsion Pendulum

4.4.1 Torsion Pendulum Dynamics

Consider a torsion pendulum with a constraint to rotate about a vertical axis.
The dynamics follow the simple relationship between the torque, 7, the angular ac-
~* celeration, é,'and_ the instantaneous moment. of inertia, I, about the axis of rotation

- for a rotation through an angle 6:
r=10 | (4.12)

Three wires may be used for instance to generate the ne}éessa,ry constraint for the
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torsion pendulum to rotate about a veftical axis. From the free body diagram of a
trifilar torsion pendiﬂum shown in Figure 4.1(a), a rotation of the pendulum platform
‘through and angle of 8, results in the restoring force of —mgsin ¢, where m is the
mass of the pendulum, ¢ the angular change in the wire position and g the gravita-
tional constant. The restoring torque, assuming small angles such that sin ¢ ~ ¢, is

-therefore:
= —mgér -  (4.13)

where 7 is the distance from the rotation center to the wire attach point. Equating

Equation 4.12 with Equation 4.13 one obtains:

1= —mg¢r o (4.14)

From the geometry shown i_ny-Figure 4.1(b) it is seen that the relationship between @
and ¢ is given by equating the arc lengths, such that r§ = L¢, where L is the length
of the wire. Substituting in the relationship for ¢ and rearranging terms, one obtains
- the ordinary différential equation for the motion of the pendulum platform in terms
of the rotation angle 6: '
iemar, o - (4.15> |

T L7 I
Therefore, the equation of motion is a simple harmonic oscillator wherve‘the natural

frequency of oscillation is: |

2. -
2 _ mgr

=TI (4.16)

w

~ Clearly, the physical system will exhibit some damping and the system response will
be that of a damped harmonic oscillator. The damped natural frequency, wg, is a
quadratic function of the damping "coefﬁcient, ¢, given by:

wim /10 B S (4.17)»
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Thus, the natural frequency of a lightly damped pendulum is not strongly dependent
- on the system damping, and wg ~ w. Since the radius of gyration, Ry, is defined
as Rg = I/m, the relationship between the pendulum radius of gyration and the
frequency of oscillation is given by: ' |

Rj:T—n-:E - (4.18)

where the torsion stiffness coefficient k is defined by:

gr _
k=== ' 4.19
- L | - (419

The torsion pendtﬂum 6scillatory frequency therefore characterizes the pendulum ra- -
dius of gyration, or indirectly the instantaneous moment of inertia about the rotation |

axis.

4.4.2 ‘Mass Cénter Measurement Using a Torsion Pendulum

Although a number of techniques exist for measuring an object’s mass center
offset from the geometric center, it is worth recognizing that a torsion pendulum is |
also capable of such a measurement. Recall Equation 4.18 for the relationship between

“ the torsion pendulum rotational frequency and the radius of gyration:

By measuring the nafural«frequency of rotation,"‘the mass center offset from the geo-
metric center of an oiject is also obtained. To see this, first replace the instantaneous
moment of inertia, I, about the rotation axis in Equation 4.18 with the separate con-
tributionvs'vto the total instantaneous inertia due to the torsion pendulum platfofm,
I,,, and the measurement object, I,. Furthermore, note that the moment of _i'nertiav
for the objeét consists of the linear sum of the moment of inertia about the objects
" mass center, I,, plus the parallel axis theorem components of the objects mass, Mo,

times the square of the distance from the rotation center to the mass center, r2. In
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(a) Side View " (b) Top View

Figure 4.2: Pendulum configuration for mass center measurement.

addition, the total mass is replaced by the mass of the object, m,, plus the mass of
the pendulum platform, mp to obtaln
Lo, + (I + mor?) k

R2= =& (420
.g Mo + My w? ( )

~ Placing the object on the pendulum far from the rotation axis amplifies thé contri-
bution due to the mass center offset from the geometric center, due to the quadratic
dependence on r. By Changing the orientation of the object with a ﬁXed geometﬁc
locatlon relative to the pendulum rotation center, the mass center offset is determmed

by measuring the change in the natural frequency, w

Consider for example an object with a mass centef offset from the geometric center
Qf‘ magnitude 8. The object’s geometric center is placed on the pendulum at a locati'oinv
of R from the pendulum rotation axis, k. Refer to Figure 4.2 for a graphical depictio{pf
The mass center offset within a plahe can be determined by rotating the ob jeét about
an axis parallel to the pendulum rotation axis. The offset is determined by measuring
~ the pendiﬂum oscillation frequency for different rotation angles of ¢. The angle ¢ is
the angular location of the mass center relative to the vector from the rdtation axis to
“the object’s geometric center. For each rotation angle ¢, a corresponding change in
the pendulum oscillation frequency will be observed. For instance, if the mass center
. location is at an angle of ¢ = 0 and then rotated to ¢ = , the maximum change -

- in the radial distance to the mass center will occur. The maximum change in the
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Figure 4.3: Vector addition for mass center location.

measured. pendulum frequency will also result.

The requlred frequency resolution, or rather the ratlo between the maximum and
-' minimum pendulum oscillation frequency for the range of ¢, is a function of the radial
offset locatlon R, and the magnitude of the mass center offset, . Consider the simple
vector addltlon scenario depicted in Flgure 4.3, for the addition of the vectors from
 the rotation axis to the geometrlc center, 79¢/ o , and the vector from the rotation axis
to the mass center locatlon 7™e/° The vector from the rotation axis to the mass

center location is given by the vector sum:
Fmefo = §9clo 4 pmelse @)

and the magnitude of the distance to the mass center, 72 in Equation 4.20, is given

by the scalar product:

7'2 _ Tmc/o

Fme/ | (422
~ For this example, assume the location of the geometric center is given by:
79/° = R3 o (4.23)

 The magnitude of the mass center offset from the geometric center, &, as shown in
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. Figure 4.3 is defined by the scalar 'product:

5 = (7me/oe . Fmeloe) (4.24)
" such that the vector from the geometric center to the mass center js gi\fén by:
Fme/9e = §cospi+ Ssing ) E - (4.25)

~ "Using the vector addition as described in Equation 4.21_,'"one obtains the 'vector to
the mass center location from the rotation axis as a function of the rotation angle ¢:
7™/ = (R+6cos )i+ dsingj . (4.26)

- The magnitude of the distance to the mass center from the pendulum rotation ,c‘ente_r,.

r2, for Equation 4.20 is therefore:

T'_2 :b,f_-mc/o . fmc/o i

= R?+ 2R cos ¢ + 87 o - (427)

Substituting in the expression for r2 into Equation 4.20, one obtains an expression
for the pendulum oscillation frequency as a function of the rotation angle ¢:
I, + I, +m, (R2+2R6cosp +6%) K

LI  (4.28
me + My, ‘w? ' o )

For the required range on the frequency resolution, consider the two extreme
conditions, where the mass center is at either ¢ = 0 or ¢ = 7. Taking the ratio of

Equation 4.20 for each case, one obtains:

(ﬂ) 2 = Lo, + 1o +m, (R2 '+ 210 cos ¢y + 52)

= 4.29
wy Iy, + 1, + my (R2 + 2R6 cos ¢ + 62) (4.29)

Simple algebraic manipulation results in a relationship for the change in oscillation
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frequéncy'dhe to a mass center offset, & E o .

~1 (4.30)

N[=

wo—w;  Aw (Iozz + I, +m, (R?+ 2Ré cos ¢ + 52)>

w1 N W B ‘Iozz+Io+mo(R2+2R5COS¢2+52)

" Equation 4.30 is plotted in Figure 44 for a representative value. of the pendulum
platform inertia.. The measurement 6bject values utilized'are for a 25 mm radius brass-
rsph'ére. vFrom Figuré‘ 4.4 it is seen that for our representative eXamplé, a frequency
" resolution of approximately 1 part in 10% is necessary to me.asure a mass center offset of
8 um Thus, it is pdssible to measure the mass center offset to values comparable to the
‘traditional pendulous technique with only a modest"» frequency resolution. Depending
“on the pendulum parameters and the measurement object, it is theoretically pos‘sible‘-

to surpass the 'l um level for mass center determination using a torsion pendulum.

4.4.3 ‘_ Inertia :M_easurement' Using a _Torsion' Pendulum

- In order to determine the moment of inertia tensor using a_,jtorsionv pendulum,
- recall Equation 4.1 for the instantaneous moment of inertia about an axis of rotation

a:
I=a-1-a

Substituting in the '_relationship for the instantaneous moment of inertia as described
by the torsion' pendulum dyhamics, Equation 4.18; one obtains the inertia tensor;

characterized by the torsion péhdulum properties:

mk . = ., | ‘
an"l'a . | (4.31)
- Equation 4.31 howévér does not completely indicate how one obtain.s. the inertia
~tensor of an unknown object using a torsion pendulum-and the procedure outlined -
in Section 4.3.2. When an object is placed onto a torsion pendulum platform, the
apparatus is only capable of determining the radius of gyration for the complete

- system, namely the pendulum> plus the measurement object. Thus, ‘vthé quantities
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[dimensionless]

A®W/®,

Figure 4.4

Parameter Value

Iozz 400 kgmm2
My - 0.55kg
I, - 125kg-mm?
R 75 mm

0 0.2 0.4 0.6 0.8 R
: Mass Center Offset, &, [m] % 10

: Required frequency resolution for mass center measurement using a torsion

pendulum.
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in Equation 4.31 must be modified to include the total system mass, my, and total
moment of inertié. The total moment of inertia consists of the inertia tensor for
~the measurement object, fm, and the pendulum platforni inertia, I:o, or the initial
offset inertia before the measurement object is added to the system. As described in
Section 4.3.2, the inertia tensor determination requires measurements of the object
with unknown inertia along n unique directions ™Ma. The axis of totation for the
pendulum platform is however constant for each measurement by nature of the torsion
penduhim‘ dynamics. Consistent with Figure 4.1(b), the fixed rotation axis of the

torsion pendulum is k. Equation 4.31 thus becomes:

LIPS SV A L (a32)

w?

Furthermore, define the pendulum inertia about the fixed rotation axis by:
Iozz = k Io -k : (433)

Ioz;is a constant for each measurement direction g and therefore represents a
constant offset to th'e magnitude of the measured inertia tensor. Rearranging Equa- '
~tion 4.32 and substituting in the representation for the initial inertia offset due to,
the pendulum. fﬂatfor_m, one ‘obtains an equation for the inertia of the measurement

object as a function of the torsion pendulum natural frequency:

mrpk . = . ' )

—5 —ly.=a0-In-6 , (4.34)
w _ ,

Equation 4.34 is then used to formulate Equation 4.2 for the system of equations.

' relating the inertia tensor to the instantaneous moment of inertia about a rotation

axis.



Chapter 5

Apparatus Des1gn° |

Moment of Inertla Measurement

When designing an apparatus to measure the moment of inertia to a high precision,
care must be taken to minimize the extra degrees of freedom in the system. Introduced
he‘re is a new method for measuring the moment of inertia using a novel five-wire
torsion pendulum design [18]; which shows the prospect of exceeding'_cur'rent state
of the art by almost an order of magnitude. Bifilar and’ trifilar pehdulums do not
constrain the swingivng, or lateral‘translation modes. To improve the accuracy of a
standard trifilar pendulum, the lateral pendulum modes need to be constrained. Five
support wires are sufficient to constrain all but one degree of freedom. In a five-wire
pendulum, two additional wires are arranged as shown in Figufe 5.1 to minimize '
rotations about the other two rotational axes. The design reduces errors due to
“tilt and horizontal translational degrees of freedom. The three attach points on the
platform supporting the inertia to be measured are positioned equidistant from the
center of rotation. At one attach point, a single vertical wire is used and the other
two attach points consist of two wires. The wire geometry is symmetrical about a
plane formed with the vertical wire and a line emanatlng from the rotatlon center
to the vertlcal wire attach point. The horizontal components of the wires Wthh are
| _ splayed out from asingle attach point provide horizontal stiffness to prevent pendulum

platform swinging motion. The translational stiffness is provided in two ways. First,

97
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Figure 5.1: Five-wire torsion pendulum wire geometry. Initial platform deslgn version. :
The wire geometry is identical for subsequent platform versions. ’

the attachment locations for the two-wire attach point are separated by 905 within
the plane of the pendulum platform. In addition, the two wires at the single attach
point are splayed out at 90°. The wires are attached to the supporting frame along a
line emanatlng from the rotation center at a point in the plane contamlng the mass
center of the. obJect to be measured. The choice of the attach point locations on the
supporting frame ensures a constant curvature at the platform W1re mount pomts
from each wire, which coincides with the curvature of the pendulum rotation. The
constant curvature constraint is necesSary to ensure proper rotation about the vertical
axis. - _ - | , ;
It is important to note that friction is eliminated by the five-wire design. The
pure rotation could be achieved by other means, such as the use of an air bearing
or jewel bearing. Yet by adding a bearing into the system, frictional uncertainty

must be considered. The w1res are attached to ensure constant curvature at each

platform wire attach point, which forces the pendulum platform to rotate about a . -
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specific vertlcal line. Thus the rotatlon center of the platform is dictated by the wire

geometry and the uncertainty due to frictlon is eliminated.

5.1 Pendulum Platform Design

The pendulum platform is the key component to the five-wire torsion pendulum ,
The platform is responsible for connecting the wires in such a fashion to enable the
proper rotational motion. In addition the platform provides a foundation on which
to fixture measurement obJects To begin the de81gn of the pendulum platform the

follow1ng key design requirements exist:
"o Low inertia relative to the test article.
. Low mass relative to thetest article.
° Easily rnachined. |

' The inertia of the platform must be low compared totlre object to be measured, |
such that the measurement object inertia is a relatively large contribution to the
~ overall pendulum plus object combination. If the measurement object inertia were
emall compared to the pendulum platform for example, then say a 1 part in 10*
measurement precision of the combined platform plus object would not Yield al part
in 10* precision for the object in question. Similarly, the mass of the pendulurn '
platform needs to be low compared to the measurement object such that a shift
in the mass' center of the measurement object can be easily identified. lnaddition
to the requirements set upon the mass properties of the pendulum platform, there
exists the ease of manufacturablhty requirement. A part which is easﬂy machined
allows not only for reduced cost, but allows for a yleld of a higher quality machined
part/tolerances, as well as a faster turn around of future revisions.

- During the design process, two revisions were carried through the manufacture and
testing phase. First, an initial proof of concept version was generated as a student :
project [18], which was further modified by the author to overcome design limitations.

The initial student project platform design geometry is shown in Figure 5.1. The final

0
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Figure 5.2: Five-wire torsion pendulum solid model.
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Figure 5.3: Five-wire torsion pendulum. (Actual Hardware, Final Design)
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version which is discussed in this work was then designed and constructed by the
author based on information gained during testing the initial design. The pendulum

design history is summarized as follows: -

" Design 1: Original student course project design with shadow sensing.
Design 2:  Student pr‘oject design modified for optical sensing (Sec-
"~ tion 5.5.2). Only the»mechanical‘ hardware was reused. New

software, instrumentation and optical sensing.

Design 3: Symmetrical five-wire design. All wires were of same length,
' symmetrically distributed about the rotation center. The
design did not properly constrain the translational ‘modes
and was not carried beyond initial CAD modeling.
Design 4: The‘ﬁnal design described in this work. The design utilized ,
the same wire geometry as pr()dnced in Design 1. The me-
-chanical hardware was re_désigned to overcome limitations

.observed during testing of Design 2.

Through testing of Design 2, a number of seéondary requirements were discovered,

- including:

.o Platform Symmetry

Non-Contact Sensor and Actuator

Repeatable Wire Attachment and Assembly

e Symmetric Kinematic Fixturing System'

Mass Cénter,Near Rotation Center
o Repeatable Calibration Method

o Automated Measurement Instrumentation

- - Thermal Insensitivity
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Requirement ,‘ ‘ Section
- Non-Contact Sensor: 5.6, 5.5.2
Non-Contact Actuator . 5.6

‘Wire Attachment 5.2
Kinematic Fixtures 54
Calibration - - 6.1
Thermal 7.1
- Vacuum 8.1.1

Table 5.1 Design requirement implementation sections.

e Vacuum Compatible, (desired but not required)

The cofreoponding design which addresses each of these requirements are further
discussed in the folloxviving sections, yet the impact on the actual pendulum platform 7
design is discussed here.. Table 5.1 summarizes the sections for further information
on each of the secondary design requlrements which are not fully discussed here.
For the pendulum platform, a great deal of care was taken to ensure a symmetrical
geometry. Due to the requlred five-wire geometry and requirement for a low moment
~ of inertia, the platform was designed to be symmetrlcal about a vertical plane passing
through the vertical wire and the rotation center. Flgure 5.4 depicts the SolidWorks
model and the final machined platform hardware. Simplified mechanical drawings for
the final pendulum platform are also found in Appendix B.1. |
In standard dynamics theory, an object with no constraints will rotate about the

mass center. For the ﬁve-w1re design, the platform is constrained by the wires to rotate

‘ about a fixed axis, Wthh may not necessarily pass through the mass center. Thus,

in order to help the platform generate a pure rotation without fighting nature, the
mass center of the complete pendulum platform is carefully designed to coincide with
the desired rotation center. | From the model designed in SolidWorks, the designed
m‘ass‘cehter of the complete system, assuming a homogeneous density, was within
0.02mm of the expected rotation center. The triangular platform geometry leading
to the vertical wire at the right in Figure 5.4 is chosen such that the mass required

to offset the opposite end of the platform is close to the rotation center, reducing
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(a) Solid model

(b) Actual hardware

Figure 5.4: Five-wire pendulum platform.
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the total moment of inertia for the system. During the solid model design, a trade
was constantly made between the platform thickness and the size of the triangular '
geometry leading to the vertical wire mount (right side of Figure 5.4). At the opposite
end of the platform (left side of Figure 5.4), slots are machined to remove extra mass
far from the rotation-center to reduce the platform moment of inertia. The large center
~ hole allows the measurement object to fit with limited clearance above the platform
resulting from the five-wire design geometry and the ’required wire attach points.
In addition, the large center hole ensures that the mass center of the measurement
'object can be shifted close"to the verticel location of the wire attach points above the _
platform. This ensures any inverted pendulum-like tilting frequencies of the comblned |
ob ject / platform system are above‘the measurement frequency band. Geometry details

_ for the la.rge center hole are found in Mechamcal Drawmg B 2.

The pendulum cal1brat10n process, which is further. d1scussed in Section 6. 1, re-
quires the add1t1on of spheres to the pendulum platform. The spheres are repeatably
located on the platform threugh a number of calibration holes, as shown in Fig'ure 5.5.
Eaeh set of three calibration holes are located equidistant from the pendulum rota-

- tion center, as listed in Table 5.2. The calibration hole locations are positioned in'ab
- symmetric fashion aleng 120° radial lines emanating from the platform mass center to
" ensure the mass center is not shifted by a ché;nge in calibration sphere location. Each
calibration hole has three equally distributed small stress relief holes drilled around
,the calibration hole circumference. The relief holes ensure a three contact pomt in-
terface between the hole and the calibration sphere for a repeatable placement. Refer
‘to Mechanical Drawing B.1 and Mechanical Drawing B.3 for further details on the

‘calibration hole location and design.

~ The pendulum platform needs the ability to hold a Va;riety of measuremient object
geometries. The fixturing philosophy is to utilize a common interface for a number of
different measurement object fixtures. The measurement object fixtures are further
discussed in Section 5.4. On the pendulum platform, the interface to the fixtures is
kprovided via holes drilled again along 120° radial lines from the mass center. ‘The
120° geometry is chosen for the same reasons as discussed for the calibration holes.

Each hole will accept a small sphere for a kinematic interface to the object fixtures.
(.
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Figure 5.5: Five-wire platform top view. The holes for calibration sphere placement
are depicted along the 120° lines. Note also that the wire attach points are separated
by 90° for translational stiffness. ‘

Identifier Numbers Radial Distance
» inches (mm)
Hole Set 1 . 1,23 1.450  36.8
"Hole Set 2 4,56 1.750  44.5
" Hole Set 3 789 2150  54.6
Hole Set 4 10,11,12 2.550 , 64..8_
. Hole Set 5 13,14,15  2.950 74.9
- Hole Set-6 16,17,18 3.350 - 85.1

_ “Table 5.2: Calibration hole distance .from‘ rotation center.
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As sueh, each hole is again drilled with three equally spaced relief holes for a three
contact point interface between the sphere and the platform. Refer to Mechanical

Drawing B.2 for details on the interface fixture ‘mounting holes.

- As shown in Section 4.4.2, a torsion pendulum may also be used to measure
the mass center offset for an object. Mass center measurements require that the
measurement object be placed far from the rotation center contrary to moment of
inertia measurements. Although the pendulum platform is de31gned primarily as a
moment of inertia measurement apparatus mount1ng holes are also placed onto the
pendulum for use in mass center measurements. For mounting an obj Ject three holes
. - separated by 120° angles are drilled with identical design as the calibration holes.
| The three mounting holes are centered around the calibration hole set number five,
located along the direction of the vert,ical wire attach point. For a spherical shaped
object, three small spheres are placed into each mounting hole, creating a symmetrical
‘ 'three—po1nt mount. The geometric center of the sphere is then positioned at a radial
distance from the rotation center equal to that of cahbratlon hole set number five..
The location of the mounting holes will allow a 2 inch sphere to fit onto the platform
without interfering with the vertical pendulum support wire. Refer to Figure 5.6 for
the geometry of the mounting holes for mass center measurements uSing the torsion
. pendulum and a deplctlon of the conﬁgurat1on for the mass center measurement of a

spher1cal shaped object.

The pendulum platform is de31gned with a simple flat surface for the top and
bottom of the platform. Although it is desired to reduce the total pendulum platform
mass and moment of inertia, the thin, lightweight webv and stiffener design utilized in
‘the first pendulum platform version shown in Figure 5.1, proved to be problematic;
The web and truss structure limited the size and number of calibration spheres due
to interference with the web stiffeners, as well as limited the position of meaSurernent
- objects due to interference with ﬁxtures; In addition the platform top surface on the
first version exhibited a slight upward slope to reduce the platform total mass. This .
upward slope made it difficult to assemble the platform to the attach wires at the
~desired wire length, as it was difficult to make sure the platform was level and in a

repeatable position relative to the supporting foundation. The flat top and bottom
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Center at
R = 2.950

All dimensions in inches

(a) Mounting Holes for Mass Center Measurement

(b) With Measurement Sphere

Figure 5.6: Pendulum configuration for object mass center measurement.
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surface not only avoids interference issues, but also allows for a more repeatable
assembly to the attach wires. The flat bottom surface provides a clean, level surface

for assembly fixtures, which are further discussed in Section 5.3.

5.2 Support Wire and Wiren Attaéhment

The natural frequency of rotation for a torsion pendulum, Eqﬁationv 4.16, vis a
function of the wire length and the distance from the rotation center to thﬂé wire
'~ attach p‘oint. A change in the wire length or the conﬁguration‘ of the wire attach
point will therefore change the pendulum natﬁral frequéhcy.1 Thus, in designing-thé
torsion pendulum, a great deal of consideration must be devoted to the pendulum

wires and wire attach method.

t

5.2.1 Wire Attachment

For attaching the wires to the pendulum, a low mass, stfong7 reliable, repeat-

able placement is required. In the first wire mount design iteration, Figure 5.7, a l ,

three-jaw pin vise was used for attaching the wires to the pendulum platform and
- supporting structure. Although the pin vise attach method is easily implemented and
- provides ample clamping force for a variety of wire diameters, the design proved to

- be problematic. The issues with the pin vise setup were:
¢ Non-repeatable wire positioning )
e Total mass

The three-jaw pin vise does not reliably pdsition or center the wires within the three-
jaw pin vise teeth, which is further complicated as the wire diameter is reduced. The
total mass of the three-jaw pin vise is also a concern. The pin vises are made of steel
and hence are of relatively large mass compared to the pendulum platform. Thus, use

of the pin vises results in a relatively large amount of mass placed at the pendulum

. 1Section 7.1 in the measurement error chapter further addresses the error associated with a change
in wire length. ' '
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Figure 5.7: Five-wire pin vise wire mount.

| platform extremities. The mass at a large distance from the rotatlon center results
in an increase in the total inertia of the platform. '
" The solution to the issues encountered with the pin vise attachmént method are
solved via an -alternate flexure mount design shown in Figureé 5.8 and 5.9. The
designed aluminum mount consists of a.0.014inch (0.356 mm) radius hole and an
electrlcal discharge machlned 0.015inch (0.381 mm) slot through the hole to create
a flexure clamp as shown in Figure 5.10. The wire.is inserted into the hole and
clamping force on the wire is provided to the flexure via a #0-80 hex screw. The
flexure mount ensures a repeatable placement of wire within the mount. A ledge -
is machined at the end of the wire attach hole to allow insertion of the wire up to
a specified depth. Combined with an additional groove for visual inspection, the
ledge ensures a consistent insertion depth of the wire into the flexure clamp. Refer
-to Mechanical DraWings B.4 and B.5 for further information regarding the pendulum
‘wire mount geometry. S '
The mount is attached to the pendulum platform usihg 1/32inch stainless steel
dowel pins and a corresponding hole/slot mate for repeatable alignment. A'single
#4-40 cap screw is used to provide the mating force between the wire attach mount

and the pendulum platform. The height of the Wife mount is chosen such that the
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’ - (a) Angled ‘ " (b) Vertical

- Figure 5.8: Five-wire pendulum platform wire mounts.

Figure 5.9: Hardware: five-wire pendulum platform wire mounts.
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Figure 5.10: Wire mount hole and slot. Dimensions in inches.

intersection point of the two wires matches the height of the measurement object
mass center above the pendulum platform. In so doing, any swinging modes of the .
wire supported structure are spectrally shifted to frequencies above the measurement
oscillation frequency. To meet the design requirements of a light-weight design and
the required height to match the object mass center, the structure is light-weighted
by material removal in the center of the mount as depicted in Figure 5.8(a). The
light-weighted aluminum structure wire mount design produces a mount that is less

mass than the steel pin vise mount method.

5.2.2 Wire

The desired mechanical performance of the wire is established by first selecting the
material properties for the wire. For the torsion pendulum attach wires the following

properties are desired:

e High modulus of elasticity



5.2. SUPPORT WIRE AND WIRE ATTACHMENT ' 113

‘Mat'eriavl E  aat 298K

| ‘GPa  x107%K™!
Tungsten, Pure 345 45
Spring Steel, 1085 200 -~ 14.7

Brass, C260 117 19

Table 5.3: Material propérties. .

Low coeﬂicjenf of thermal expansibn

Ductile, non-brittle

Flexible, such that a slight bend will not retain shape

e Non-corrosive properties

Low magnetic susceptibility

Material is readily available
e Vacuum compatible, desired but not required

The modulus of elasticity and the t‘hermal expansion. coefficients are of ‘”primary in-
| teresvt,b as these parameters dictate the static length"of the supporting wires. Again,
since the natural frequency of rotation for a torsion pendulum is a function of the
wire length, it is crucial that the length of the wire remain constant under various
loads and environmental conditions.

Before selecting the material for the wire, the available form factors must first
be considered. The attach wires must be readily available in various. diameters and
- lengths. In addition, there exists the requirement that the wire be available in a
straightened form to avoid any natural spring force associated with typical coiled
wire. - Straightened wire is readily available in various metals such as aluminum,
brass, titanium, steel, and tungsten. Tungsten, stainless steel and spring steel offer
a high modulus of elasticity. Compared to steel, tungsten has a higher modulus

- of elasticity; and a lower coefficient of thermal expansion. Refer to Table 5.3 for a -
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Wire Length
N inches (mm)
~ short wire 3.0 (76.2)
vertical wire 4.5 (114.3)
long wire 12.0 (304.8)

Table 5.4: Wrre lengths for five-wire pendulum

comparison of the modulns of elasticity, E, and thermal expansion coeﬁicient, a, for
different rnaterials. The higher rnddulus of elasticity is desired to reduce the. stretch
of the wire under a load. The lower thermal expansion coefficient equates to a lower -
change in wire length from temperature fluctuations and hence a reduced dependency
of the vpendulnm natural frequency due to temperature. F(')r,prir‘narily the modulus of
elasticity and thermal expansion coefﬁcient values for tungsten, straightened tungsten
wire was selected for the torsion pendulum. It should. be noted t‘h‘atcarb‘on fiber
yarn is an excellent choice for high modulus 'ef eiasticity, ] low;coefﬁcient of thermal
' expdnsion and is flexible at smallrdiameters. Although carbon fiber is widely available
‘ vin fabric form, carbon fiber yarn is not readily available in small quantities and can
be difficult to handle. Future research may justify using carbon ﬁber yarn, but the

, _expense could not be justified during the initial design stages.

Having selected the material for the wire, the wire stiffness, cr rather the appro-
priate wire diameter is the next design decision. Wire diameter selection is further
“complicated by the fact that the wires on the five-wire are of different lengths and
snpport different tension loads to meet the proper dynamic constraints. Refer to Ta-
‘ble 5.4 for a listing of the pendulum wire lengths. If the wires were all of the same
length andﬂsupported the same load, then an applied load to the pendulum would
result in an'equal change in length of the wires. Consider for exarnple the case of
a simple three-wire pendulum, consisting of three identical vertical wires attached
- equidistant from the rotation center. As a load is applied to the pendulum p_latform,
each wire will support the same load and hence exhibit the same change in length.
For the five-wire pendulum, It is desired to match the stretch in each of the wires,

| ~such that a change in load of the platform results in a vertical only change in position
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with no tilt /translation. This further ensures a constant direction for the axis of
rotation between a loaded and unloaded platform. In order to match the stretch in
“each of the wires, we begin by modeling the wires as simple springs for the relationship

between the applied load,‘F, and change in Wire-length AL:
F=kAL (5.1)

~where k is the stiffness associated with the wire, For each of the three wire lengths

we require the stretch of the wires due to an applied load to be consistent.

Fl Fg vF3 o o
AL=—="F==="— . :
ko ky o ks (52)
where the stiffness, &, of the wires is given by
AE; N
ki = I (5.3)

By choos1ng the cross sectional-area, A, and modulus-of elast1c1ty, E, of one wire, the :

propertles requlred of the other length wires are estabhshed

R L - I
. A1E1 = A2E2F2z; S (5.4)
F; Ly '
ABy = A, 3R 5.
3Lu3 b T | I (5.5)

In order to matcll the same change ln length of the different length wires, we therefore
have the option of either maintaining a constant wire modnlus of elastieity among
_ the wires and varying the cross-sectional area, or- reta1n1ng the same cross-sectional
area for the wires and changing the material. It was chosen to use various wire cross-
sectional areas (via wire diameter) to match the change in length of each wire. By
“selecting the same material the wires will exhibit similar responses to‘en\lrironmental

disturbances such as for example thermal (coefﬁcient of thermal expansion «).

From the standpoint of varying the wire cross-sectional area, a thick wire will
bend and tend to retain shape. The pendulum stiffness increases with wire thickness

and the natural frequency raises due to a shorter equivalent ‘wire length. As such,
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‘Wire No. Wire Diameter Required AE Actual AE % Diff.

inches  (mm) x10*N - x10*N’
‘Tungsten: =~ ~.
| 1 0010 (0.254) 1.75 1.75 0%
2 0.005  (0.127) 0.452 0437 -3.3%
3 10.013  (0.330) 2.92 295 1.0%
Steel S : :
1 0.008 (0.203)  0.649 0.649 0%
0.004 (0.102) 0168 - 0162 - -3.6%
3 0.010 (0. 254)  1.09 .01~ -7.3%

Table 5.5: ere stiffness conﬁguratlon

it is desired to use as small of a cross-Sectional area for the wires as feasible. Yet,
" extremely thin wire is difficult to attach, fragile to' work with and needs to exhibit
enough strength to support the load. ’1n addition, wire diameters less than 0.004 inches
| (0.102mm) are not rezidily available. In order to determine the ‘appropriate Cross-
sectional area for the wires, the required supporting load in each wire is determined. .'

From statics, the tension in-each wire due to a 1kg load is found to be:

T =45N (vertical wire)
T, = 1.6N (short wire)
T3 = 2.7N (long wire)

The lowest stiffness required is therefore in the shortest wire. As such the stiffness
of the shortest wire (wire 2) is defined based on the smallest available wire diameter. -
From Equation 5.4 and the various wire material and geometry pairs which are readily

available, a set of suitable wire combinations for the five-wire apparatus is determined.

‘Table 5.5 lists the desired wire combinations to match the change in wire length due

to an-applied 1 kg load of the platform and Table B.4 in the Appendlx lists the part

numbers for the supporting wires utilized in the apparatus.
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Wire Diameter = Tube ID - Tube OD - Notes
~_inches (mm) inches (mm) inches (mm) L
0005 (0.127) 0006 (0.152) 0012 (0.305) short wire
0.013 (0.330) 0.025 (0.635)

0.010 (0.254)  0.013 (0.330) 0.025 (0.635) vertical wire -

0013 (0330)  0.013 _ (0.330) 0.025 (0.635) long wire

Table 5.6: Wire and hypodermic tube configuration.

Since the supporting wirés are of a different cross-sectional area in order to maLt‘ch _
‘the same wire stretch of the loaded platform, the wire attach method is slightly com-
plicated. In addition, it is desired to use wires on the order of 0.004 inches (0.102mm)
in order to reduce the total stlffness of the system. In order to simplify the design and
to reduce manufacturing complexity of the flexure wire mount hardware deslgn, (Fig-
E ure 5.9), the flexure mounts are designed for a common size wire. Since it is difficult to
drill a long hole at 0.004 inches (0:102mm) in diameter; a largér hole size of 0.028 inch
(0.711 mm) diameter is désigned into the flexure wire mounts.to accommodate the
largest expected wire diameter. By designing the flexure wire mounts to handle the
largest expected wire diameter, not only is the manufacturability of the wire mounts
increased, but there also exists the flexibility in interchanging the wire diameters to -
achieve the desired stiffness and performance. The resulting issue is how to attach
a wire of diameter 0.005inches (0.127 mm) into the flexure clamp hole diameter of
0.028 inches (0.711mm) designed for a wire of 0.013inches (0.330mm) in diameter.
- Tt is not possible to provide adequate clamping force to a small wire with such a
mis-match in the wire diameter to the hole size. The solution is to place the attach
wire into a set of concentric tubing, which increases the equivalent wire diameter at
the attach point. Stainless steel hypodermic tubing is readily available in a number
‘of diameters with tight tolerances on the internal and external diameters to allow a
Y'tight concentric fit. Table B.4 lists the part numbers and mechénical speciﬁcations
vfor the hypodermic tubing tested for the wire attachment ﬁttlngs Table 5 6 lists the

final comblnatlon of hypodermlc tubing used for each wire diameter.
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(a) Crimp Attachment

(b) Solder Attachment

Figure 5.11: Crimped and soldered wire attachment examples.
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Figure 5.12: DMC AFMS8 wire crimper.

In order to attach the wires to the hypodermic tubes, the two methods of soldering
and crimping was attempted. Figure 5.11 shows two representative examples of the
crimping and soldering wire attach methods. Figure 5.11(a) shows a radially crimped
set of two concentric stainless steel hypodermic tubes with a tungsten wire in the
center. The solder method, Figure 5.11(b), is a set of two concentric brass telescoping
tubing, which are soldered together with a tungsten wire in the center. Through
experimentation, the crimp method was preferred for a number of reasons related
to a clean, reliable and repeatable attach method. For example, the solder method
requires the addition of solder to the assembly through the addition of heat. It is
difficult to obtain the right amount of solder and flux to obtain a clean connection.
Extra solder protruding from the end of the hypodermic tubes tends to create an
equivalently stiffer wire beyond the section with the concentric tubes. In addition,
it is difficult to provide the proper amount of heat for a good consistent bond to
the tungsten or stainless steel wire. In comparison, crimping is a clean connection
and the crimp doesn’t harden the wire beyond the concentric tube section like the
soldering method. All of the test cases for the crimp method survived a successful
pull test, yet several of the solder method tests did not due to inconsistent bonding
between the solder and the wire. For crimping the wires to the set of concentric

hypodermic tubes, a DMC AFMS8 wire crimper, (shown in Figure 5.12), designed
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for miniature and sub-miniature electrical connections of 20 AWG through 32 AWG
(0.008 inch diameter) wire was utilized. The crimper is a mil-standard 8 impressing
crimp for maximum tensile strength, and the radial crimp centers the wire well inside
the hypodermic tubes. The maximum crimp depth is dialed in on the AFM8 crimper -

- selector knob to ensure consistent crlmps between the wires.

5.3 jV»Pendulur'n Platform ASSembly Mounts‘

Slnce the platform rotatlon center is fixed by the geometry of the wires, there is
1o single mechanical constraint device to properly locate the pendulum platform w1th "
'respect to the foundat1on During assembly, it is 1mportant to properly locate the
pendulum platform before attaching the wires.. If for example, the platform is located
offset from the rotation center imposed by the wire constraints when the wires are
attaohed,' then the pendulum platform will shift after the wires are attached. The
‘resulting configuration of the pendulum,vlvlll not be level and the wires will have in-
| consistent tension. In fact, it is possible that one or more of the wires' may not be
loaded at all, and the proper constraints to force the desired rotation center will not
be imposed Thus, in order to attach the wires between the pendulum platform and A
the supportmg foundation in a consistent manner, an assembly mount is required.
Prior to wire attachment, the designed assembly mount locates the pendulum plat- :
formtoa pos1t1on‘ consistent with the desired rotation center relative to the pendulum
foundation. This is achieved by making use of the optics plate and the standard 1inch
“hole pattern on whichthe entire pendulum structure is constructed. The pendulum
foundation is constructed such that the desired rotation center is coincident with one |
of the threaded holes on the optics plate. The pendulum platform is then designed
with three corresponding mounting interface holes on a 1inch hole pattern relative
" to the rotation center. These mounting holes are labeled with a ”M” in Figure 5.5.
Each mount hole has three equally distributed small stress relief holes drilled around
the mount hole circumference. The relief holes ensure a three contact point interface
between the hole and a m\ounting sphere, which is used as the interface to the as- |

sembly mount structure. The kinematic design ensures a repeatable placement of the
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Figure 5.13: Five-wire platform assembly mount.

“pendulum platform onto the assembly mounts. .
The assembly mounts, Figure 5.13 and Mechanical Drawing B.9, consist of an
aluminum machined block with a pair of stainless steel dowel pins to form a set
of parallel. rails. The assembly mount contains a :cou.nter sunk 1/4-20 screw below
»_the' parallel rails for attaching the mount onto the optics plate. A stainless steel
Sphere’\is then placed onto the parallel rails. for a Single degree of freedom interface -
to the pendulum platform. The pendulum platform is then placed onto the spheres
at the linch hole patfern mounting holes. A solid model depiction of the pehdulum
platforfn on the assembly mounts isdepicfed in Figure 5.14. The location of the
pendulum platform can be adjusted slightly by rbtating each of the assembly mounts
. and ‘hence changing the direction of the degree of freedom provided by the parallel
rails. During the assembly of the five-wire pendulum, the aSsembly mount rails were
oriented parallel to the side of the pendulum platform. A heavy weight was placed

on top of the pendulum platform to aid in stretching the wires to the desired tension. ’

5.4 Measurement ‘Object Fixtures

In order to measure the moment of inertia for an ijéct 1n question, the object
must be attached or fixtured to the pendulum platform. The fixtures provide two

important functions:

° Répeatable object location.
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Figure 5.14: Five-wire platform on assembly mounts.
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e Repeatable object orientation.

‘As the object is'positioned onto the platform, the location of the mass center relative
to the rot"ation center is ef concern. Any offset from the rotation center must be
~accounted for when determining the inertia for the objecf by applying the pafallel '
axis theorem. Thus, by having a repeatable 'placefnent of the measurement object
onto the pendulum platform, a consistent contribution to the radlus of gyratlon due
to the offset from the rotation center will occur. I ' ,

Similar to the requirement for a repeatable placemeut of the object with respect
to the pendulum rotation center, the orienfation of the object must also be consistent.
In additioh, as explained in Seelcion 4.3.2, a moment of inertia measurement device‘
must be capable of determining'the instantaneous moment of inertia about at least
six different axes of rotation, which span the »covmplet,e moment of inertia ellipseid, in
~order to determine the full moment of inertia tensor.” A torsion pendulum design is' 7
capable of me‘asuring the radius of gyration abeut one axis. As such; the apparatus

‘requires the capability of positioning the measurement object in at leasf six different
orientations. The object fixturing method must therefore incorporate the capablhty
for both a repeatable object placement and orientation. ’ -

- In order to accommodate a wide variety of geometries, the object fixturing philos-

- ophy for the five-wire pendulum is to create a standard interface on which Specialized

fixturing devices can be attached. As discussedvin Section 5.1 during the pendulum

“ platform design description, a set of holes are drilled along 120 ° radial linee to inter- |

face with the orientation fixtures. In Figure 5.5, the interface holes are the smaller
holes drilled near the center of the platform." The holes accept a small 3/16 inch,

(4.8mm), diameter sphere, which are then designed to interface with a set of v-

grooves on the mounting fixture. The sphere and v-groove interface provides a simple |
kinematic two-point contact for repeatable positioning. A set of three sphereS in the

holes drilled along the 120° lines completes a three—pomt mount to the mounting

' ﬁxture

For each ruounting fixture design, a set’ of parallel v-grooves are machined to allew
shifting the object location in steps of known, repeatable amounts. In addition, the

pendulum platform contains an identical set of three mounting holes offset by a fixed -
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(d) V-Grooves on bottom.

Figure 5.15: Object orientation fixtures for cylindrical object.

amount to provide an additional number of object location configurations. The ability
to shift the location of the measurement object relative to the pendulum platform,
and hence the rotation center provides the ability to determine the approximate
location of the measurement object’s mass center relative to the rotation center. For
example, by measuring the pendulum frequency of oscillation and then repeating the
measurement after shifting the object by a known amount, a change in the oscillation
frequency will be observed due to the parallel axis theorem.

For the five-wire pendulum, orientation fixtures for two different geometries were
created: spherical and cylindrical. These fixtures are kinematic in design to ensure
a repeatable fixturing method for the object position. Where possible, a kinematic

design is also utilized for establishing a repeatable object orientation.

5.4.1 Cylindrical Object

For the cylindrical-shaped object, a set of sleds to generate both a repeatable

object placement and different orientations were constructed as part of a student
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(a) Top ‘ . : (b) Bottom

- Figure 5.16: Mount for spherical object.

project in the Precision Enginee'ririg course taught at Stanford University by Pro-
' fessors Dan DeBra and Dave Beach [18]. ‘For repeatable placement, the fixtures are '
mounted to the pendulum platform using a set of v-grooves and ball bearings. For -
orientation, a set of kinematic fixtures, one for each orientation,~ were construeted.
Refer to Figure 5.15. Each fixture permits changing the orientation of the cylihdrical
’ object with high repeatability and are measured to be repeatable in orientation to
within 0.02°. Note that there are only three different orientations required for the
cylindrical-shaped object. By utilizing the symmetry of the object, diﬁerent orienta-
tions can be achieved with the same fixture by simply rotating the object about the

axis of symmetry.

5.4.2  Spherical Objecti .

A single fixture mount was constructed for an object with a spherical geometry.
Refer to Figure 5.16 and Mechanical Drawing B.8. Since a sphere is of a simple
geometry with no features for orientation positioning, the mount can only position a

spherical object with respect to translation. Clearly a kinematic mount design as used
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Figure 5.17: Polhode paths for different energy levels and a given angular momentum.

for the cylindrical shaped object is preferred for both translational and orientation
positioning; but the lack of geometrical features on the spheré prevent such a design.
- For a repeatable placement in the plane of the pendulum platform, the same kinematic
interface consisting of v-grooves and ball bearings is used. The mount is further
designed with a three-point contact interface to the sphere at the proper radius to
position the mass center of a 50 mm diameter sphere in the plane of the wire attach
points. For establishing the actual orientation of the sphere in a repeatable fashion,
an alternate method must be used. The philosophy for the spherical object is to place

a set of markings on the object to use for establishing the orientation.

First, in order to place a coordinate system on the sphere in a logical position and
orientation, it is desired to determine the approximate directions for the principal
moments of inertia. From rigid body dynamics, a rotating object free of external
torques will have constant energy and constant angular momentum. The angular
momentum is fixed in inertial space and the spin axis will move within the coordinate

frame of the rotating body. The path traced by the spin axis within the body frame
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(a) Hemisbherical graphite annulus. {b) With sphere.
Figure 5.18: New Way air bearing used for marking polhode path.

is known as the polhode path and is described by the locus of all points of constant
- rotational kinetic energy and constant angular momentum [19]. Thus, the intersection
of the ahgular momentum ellipsoid and the rotational kinetic energy ellipsoid is the
- polhode path. This elliptical intersecfion, and hence the polhodev path, is centered
around the minimum or maximum principal momént of inertia. Figure 5.17 shows
- for example a set of polhode paths for different energy lev_els.. The figure shows
the elliptical polhode paths are centered around the direction for the maximum and
minimum moment of inertia. Therefore, in order to determine the direction of the
principal axes, one needs only to trace a set of polhode paths onto the surface of the
sphere. ‘ ' ‘ '

In order to achieve torque free motion, the sphere is placed into a speciélly designed
~ air bearing, which was graciously donated by New Way Air Bearings. The air bearing
consists of a sintered graphite hemispherical annulus with a diameter slightly larger
than that of the sphere. Refer to Figure 5.18. The sphere is then placed inside of
the hemiépherical shell to create the air bearing. As pressurized air passes through

the porous graphite in the hemispherical shell, an equally distributed cushion of air is
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Figure 5.19: Apparatus for marking sphere with perpendicular great circles.

generated at the surface of the sphere. This uniform, continuous flow of air creates a
low friction interface between the surface of the sphere and the air bearing, allowing
the sphere to rotate freely with negligible external torques. Once the sphere is placed
into torque free rotational motion using the air bearing housing, the polhode path
is traced by periodically placing a mark at the rotation center with a permanent
marker. If kinetic energy is dissipated, the spin axis migrates toward the direction
of the principal axis of maximum inertia. Thus, by changing the color of the marks
over time, the direction of the polhode motion is additionally identified, allowing for
distinction between the directions for the axes of maximum and minimum moment

of inertia.

Next, a set of perpendicular great circles are drawn on the surface of the sphere.

A specially designed apparatus [24], as shown in Figure 5.19, is used to mark the
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Figure 5.20: Sphere with polhode paths and great circles.

spheres.? The crossing point of the two greaf circles is then positioned to be lo-
cated near the center of the polhode paths previously drawn on the sphere surface.
Figure 5.20 shows a sphere with polhode paths marked around the maximum and
minimum principal directions. Two perpendicular great circles are drawn with the
intersection at the center of the elliptical polhode path. These great circles are then
used as a reference when the sphere is placed onto the fixture and the pendulum
platform. One great circle is oriented in a vertical fashion and oriented with a set of
vertical references: the pendulum vertical wire and the sharp edge of the wire attach
fixture of the pendulum foundation. A simple laser pointer, which was modified to
produce an elongated elliptical spot, was then aligned with the horizontal great circle,
and positioned at the intersection of the two great circles. The laser spot allows for
the sphere to be removed and to reposition the great circle intersection at the same
location. Figure 5.21 shows the pendulum platform with a sphere on the mounting
fixture. The polhode paths are clearly marked on the sphere and the positioning laser

spot is visible at the center of the elliptical polhode path.

2The apparatus was built as a student project in the Precision Engineering course taught at
Stanford by professors Dave Beach and Dan DeBra with John Conklin as the customer.
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Figure 5.21: Sphere on platform with orientation markihgs.
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5.5 Measurement /Sensing

The five-wire. pendulum requires a non-contact angular position sensor and actu-
ator. Recall from Equation 4.18, that the oscillatory motion of a torsion pendulum is
described by the relationship between the radius of gyration Ry, or the instantaneous

moment of inertia about the axis of rotation I,, and the angular frequency w:

where k is the torsion coefficient or stiffness constant of the vpendulum and my is
i the total mass of the pendulum. The moment of inertia for the system is therefopé )
determined by measuring the angular frequency w and the pendulum mass. The
angular displacement of the five-wire pendulum can be measured by a number of _

‘ different method"s. The dngular frequency is then extracted from tvh'e vtimev history of -

the angular displacement. -

5.5.1 Shadow Sensing

Shadow senéing is a straight-forward method for measuring the angular displace-
ment of the pendulum platform. A split photo-diode coupled with a wiper and thin
slit, Figure 5.22, will record a translational change in position. The wiper blocks -
the illumination of the photo-diode from a diode emitter. As the wiper MOVeS ACTOSS
the sensor, the area of illumination is ‘chang,ed. The wiper is attached to the pendu-
lum through the rotation center. Using a small angle assumption, a rotation of the
platform is converted to a translatibn, which is measured by the split photo—diode_.
Increased sensitivity is achieved by increasing the lenéth of the wiper to locate the slit
far from the rotation center. Using a small angle assumption, a larger displacement
is produced for the same amount of angular rotation. Yet, by increasing the length of
the wiper, the total moment of inertia for the‘platform plus the sensor is increased.
It is desired to reduce the total moment of inertia for the platform to allow precision "

radius of gyration measurements.
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Figure 5.22: Five-wire pendulum platform with shadow sensing.

A shadow sensing method of determining the penduluni platform angular dis-
placement was determined not to be suitable for the five-wire pendulum. Horizontal
as well as vertical translations of the platform are also recorded as an observed rota-
tion. Using the metal wiper depicted in Figure 5.22, it was observed that a vertical
displacement of the wiper and slit would generate an artificial observed rotation at
the sensor. As the slit moves farther away from the split photo-diode sensor, the size
of the illuminated area generated by the slit increases. Translational contributions to
the angular measurement are further complicated by vibrations which create a verti-
cal displacement of the slit and the wiper. Since the shadow sensing method with a
split photo-diode for angular measurement is coupled to translational motion of the
pendulum platform, the method was abandoned in favor of grating angular sensing

using optics.
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Gratin
1200 lines/mm

Figure 5.23: Grating angular sensor.
5.5.2 Grating Angular Sensing

The angular displacement .of the ﬁve—wire pendulum is measured by application
of optical angular sensing. A grating angular sensor [62] and diffraction grating
angular magnification is used to provide a sensor with both a large dynamic range
and high resolutionv. Optical sensing decouples any vertical motion from the detection
sensor signal and the associated angular magnification allows for a:high sensitivity
measurement. A diffraction grating is attached to the pendulum platform at the
CEntér of rotation. Using a laser as a light source, the gratihg diffraction orders are
used for angular sensing as depicted in Figure 5.23. As the pendulum platform rotates,
the diffracted beams rotate similar to a plane mirror reflection but are additionally
magnified by the diffraction order angle. Any minor translational motibn of the
pendulum will not be magnified arid_vertica;l motion of the pendulum will not affect
* the diffracted beam.. If the pendulum rotates (and hence the attached grating) by an
. angle of dc, the resulting incremental rotation angle 643, of the diffracted beam fbf '

diffraction order n is given by [62]:

56, = cos(a)

= con(n) ‘a (5.6)
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Figure 5.24: Position Sensitive Diode (PSD).

where « and (3, are the angles from the grating norm for the incident beam and the
diffraction angle respectively. This grating angle magnification enhances the mea-
surement sensitivity. The grating angular sensor magnifies the angular displacement
of the pendulum but does not magnify any translation.

The diffracted beams are captured by a position sensitive diode (PSD), Fig-
ure 5.24, at the 0 diffraction order and a quad photo diode at the —1 diffraction
order. The diffraction order angles of 81° and 16.8° were chosen to combine the ad-
vantages of a high dynamic range sensor with high precision. The electrical signal
conditioning schematics for the PSD and the quad photo diode are found in Ap-
pendix C.2, Figures C.2 and C.3 respectively. The sensors are arranged such that
a positive signal on the quad sensor (full right signal) and PSD are positive for a

negative rotation of the pendulum platform about the vertical axis.

5.6 Grating and Magnet Holder Design

The non-contact optical sensing scheme for the five-wire pendulum is provided
by the grating angular sensor described in Section 5.5.2. An optical grating must be

rigidly attached to the pendulum platform with the grating surface located at the
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rotation center to utilize the sensor. The non-contact actuator is provided by fixing a
permanent magnet orr the pendulum at the rotation center. The magnet is surrounded |
by two wire coils, ,‘which when energized produces a magnetic field and hence a torque
on the platform. Since both the actuator and sensor require components to be located
at the pendulum rototion center, a common fixture is used to mount both the grating
and the magnet to the pendulum platform. The manufactured grating and magnet |
holder shown in Figure 5.25 is attached to the bottom of the pendulum platform.
The entire holder is carefully designed to reduce the contrlbuted moment of inertia
~ to the pendulum platform and to maintain the mass center of the platform at the
rotation center. A stainless steel bushlng and screw are used to offset the mass of the
- grating to retain the mass center location. The holder is machined into two parts"a
top u-shape attach fitting and a bottom mount for the grating and magnet. The two
pieces are held together by two 1 / 16 inch dlameter stainless steel spring pins. The
u-shaped top to the holder provides adequate clearance for the measurement object -
and spans the large middle hole in the pendulum platform. The bottom'portion of the .
mount provides a simple interface for holding the magnet and grating. Two magnets
are placed into counter sunk holes on opposite sides of the mount and held in place
by the magnetic attraction force. A single stainless steel #2-56 set screw is uéed to
clamp the grating into place. The grating is positioned such that the surface 1s at
the rotation center of the platform. The grating surface is also flush to the surface of
:.;‘the mount to prevent obstruction to the diffracted laser beam on either side of the
‘grating surface. The gratlng center is located at a height of 4 inches ( 10.16 cm) above
the optics plate to match the optics mirror mounts. Refer to Mechanlcal Drawings B.6
and B.7 for further information regarding the geometry of the two-piece grating and
| magnet mourrt parts. A solid model showing the grating/magnet mount attached to

the pendulum platform is shown in Figure 5.26.
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Figure 5.25: Five-wire pendulum grating and magnet mount.



5.7. FREQUENCY MEASUREMENT PROCEDURE 137

Figure 5.26: F ive-wire pendulum platform with grating holder.

5.7 Frequency Measurement Procedure

As mentioned in Section 5.6, the pendulum platform contains a small permanent
magnet and a corresponding set of coils to pulse the pendulum. A repeatablé pen-
dulum response for each measurement run is ensured by using a function generator
connected to a coil driver circuit (Figure C.1) which sends a pulse to the coils. A
repeatable response is necessary, as the pendulum natural frequency of oscillation is
also a slight function of the pendulum oscillation amplitude. The time history angular
position of the platform is recorded from the PSD and Quad photo diode signal using
the grating angular sensor described in Section 5.5.2. A number of data reduction
techniques exist to extract the natural frequency of rotation for the pendulum plat-
form. The following paragraphs will describe and compare the various data reduction
techniques which were considered. A summary of the data reduction techniques is
depicted in Table 5.7.
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Technique I - Complications/Issues
o _ Resolution limited by data length. .
Fourier Transform Requires long-term noise suppression and

environmental stability.
Coherent Demodulation Excessive measurements required
Zero Crossing Detection -~ Limited repeatability for noisy data

Susceptlble to v1brat10ns and

. Damped Sinusoid Curve Fit
D variation in response amphtude

Table 5.7: Data reduction techniques.

. 5.7.1 Damped Sinu:soid:Curve‘ Fit

The pendulum oscillatoryvfrequeney is easily extracted by data reduction in the
time domain. The pendulum response to a single disturbance is known to be governed

by the equations for damped harmonic motion:

0(t) = Ase “tcos (wgt + @) +dc - (5.7)

wi = wn/1=C (58

where A, is the initial amplitude of oscillation, ¢ the damping coefficient, wy the
damped natural frequency, w, the natural frequeney, ¢ the phase, and dc the offset
‘from zero in the raw voltage signal. A nonlinear curve fit is then applied to the data
to. experimentally determine the para,metere of the pendulum response, including»
.the natural frequency wy, and damplng coefficient. In practice, the damped sinusoid
~curve fit of the data for a particular pendulum conﬁguratlon typlcally resulted in
~ a repeatability on frequency determmatlon, [ = wn/ 2r, to be within the standard

deviation range of ¢ = 2 x 1076 to 9 x 10~¢ Hz for a frequency of around 2.0 to 3.0 Hz.
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5.7 .2 Fourier Transform

Analysis in the frequency domain consists of performing a Fourier transform of -
the recorded oscillatory motion to calculate the amplitude spectral density of the
signal. The peak in the amplitude spectral density data will indicate a bin width
limited estimate of the measured damped natural frequency. In order to increase the
‘ frequency'resolution of the Fourier transform estimate, the data length needs to be
increased. By periodically pulsing the pendulum to keep,the pendulum oscillating,
long’ data lengths can be achieved.‘ A repeated pulse drive is however not entireiy
desirable, as the FFT Will contain harmonics frorn the'pulse period and will affect
the higher natural frequency of the pendulum to be measured. Since the measured
- damping coefficient is on the order of 10~ , the damped natural frequency is W1th1n
approx1mately 1078 of the natural frequency for the system. The measured natural

frequency is therefore essentially the same as the natural frequency for the system.

5.7.3 Coherent Demodulation, Sine Drive

By using the frequency response for a damped driven harmonic oscillator the
‘natural frequency of a system can be determined. The system frequency response is
obtained by applying a sinusoidal driving force to the system and measuring the phase '
- offset of the response from the drive force. A Bode plot of the system response can
~ then be genereted by repeating the procedure at various sinusoidal drive frequencies
around the expected natural frequency of the system.

The phase offset of the response from drive frequency Wlll pass through = / 2 at
the natural frequency of the system regardless of the damping ratio for the system.
Thus, by curve fitting the phase offset as a functlon of frequency, the 7 / 2 crossing
will establish the natural frequency of the system. What remains is a method  for
determining the phase offset of the response from the sinusoidal drive force. The
phase offset can be determined by using the technlque of coherent demodulation.

‘ Assume a drive force of the form:

F(t)=cos(wt) - = (59)
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and assume a sinusoidal response of the fortn:
z(t) = cos (wt + ¢) , (5.10)

If the response signal is modulated with a cosine signal of the same drive frequency,
w, one obtains: | R v '
M = cos(wt + ¢) cos (wt + gb) 1 - ~ (5.11)

The phase offset between the drive and response signal is eas1ly obtained, since the
“max of M occurs when ¢ = ¢ and M = ¢os (a_)vt + @). For the physical system, it
- is necessary to measure both the drive signal and the system response since the zero
: phase oeﬁnition for the drive 'signal‘is arbitrary. The coherent demodulation .proce-
dure was not applied to the ﬁve-Wir_e data for determining the oscillation frequency
since excessive measurements would be required to determine the 7/2 phase offset

- crossing.

5.7.4 Time Domain Zero Crossing Detection

—

To determvine.the pendulum frequency, the period is measured by detecting and
measuring the difference between successive zero crossings of the sinusoidal signal.
To find the zero crossing, a straight line is fit to the data in the proximity of the
signal mean value. Using the best fit line for each data segment, the time value
corresponding to the mean value crossing is determined for successive crossings. Then
by subtraction the signal period and thus the frequency is determined. Although the
technique works very well for a pure theoretical system response, as tested with a
measured 31gnal produced by a signal generator, the technique does not perform well -
in the physical world in the presence of disturbances and higher order system response
modes. Figure 5.27, for example, shows the raw five-wire quad photo diode sensor
data acquired at a sample frequency of 800 Hz with the time domain zero crossing

detection algorlthm applied. Although the zero crossing detection algorlthm shows

a clear fit to the data across the mean signal value crossing, the calculated signal

frequency was 1ncon31stent. Figure 5.28 shows the results after several successive
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Figure 5.27: Time domain zero crossing detection. -
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Figure 5.28: Time domain zero crossing detection results. The mean frequency for'
the data is 3.1539 Hz with a standard of 0 = 4.7 x 1073 Hz.
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frequency calculations using the zero crossing detection technique. The results clearly

- indicated a bound determinafi‘on of the frequency At first the banded results observed

in Figure 5.28 were. thought to be due to measurement 1nstrumentat10n digitization
error. Yet as the data measurement sample frequency was 1ncreased the results were
- unchanged The varnatlon in- the determlned frequencies is a result of disturbances
and higher frequencles within the smusmdal signal. The high frequency oscillation
generated by disturbances and other oscillation modes cause a fluctuation of the zero
crcssing As a result, the zero crossing detecting technique could not be applied to
the ﬁve—w1re pendulum data for extracting the frequency of oscillation to better than:
1072 Hz. | '



| Experi'mental Results

In order to perform measurements with any measurement apparatus, there exists -

a number of steps which must be performed before the actual desired quantity is

' determined. The five-wire’ pendulum is no exception' Regardless of the final desired -

. phys1cal mass property, Whether it be the mass center location or the moment of
, 1nert1a the pendulum platform must be set up properly and callbrated The pendu—

lum calibration is therefore the first step pI‘lOI‘ to measurements After an adequate " ’
.calibration, the measurements for the des1red,mass property are conducted. As de- |
* scribed in Section 4.4.2 for the mass center determination, and Section 4.3.2 for the

-moment of inertia meaSUrement a number of measurements must be performed for.

varlous conﬁgurat1ons of the object in question. First, Sect1on 6. 1 describes the cal-

1brat1on procedure and correspondmg measurement results. The remaining sections
describe the measurement process and correspond1ng results for the desired- phys1cal ”

| mass property

."‘6.1 » .Penldulum"Cali'brva"tion

As with any measurement device, the apparatus ‘must first be calibrated ‘before ‘
measurements can be mad'e For the five-wire torsion pendulum the moment of
 inertia for the pendulum platform must, be determined. The oscillatory motlon of a

torsion pendulum is described by the relationship in Equation 4.18. For the torsion

144
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‘pendulum the moment of inertia, I,,,, torsion Ceefﬁcient, k, and actual rotation center
are unknown. The unknown parameters are determined by adding a known moment
of inertia to the system. This is achieved by the addition of n calibration spheres
to the platform with a known moment of inertia Ie, such that the relationship in

Equation 4.18 becomes:

Iozz + Z[c,, = <mp + ZTI%) E ) (61)
i=1 v i=1 T o

Eaeh calibration sphere mass m; with radius a;, is placeci in holes at locations R;, as
, ,discussed in Section 5.1. The use of fixed holes for locating the calibration spheres
ensures a high repeatability for positioning and hence a consistent addition to the
total system'moment of inertia. Since the calibration spheres are not placed at the
rotation center of the pendulum platform, the parallel axis theorem is applied and

Equatlon 6.1 becomes

Lpa + Y miRY + Emia; = (m,, + Zmi) = . (6.2)
The calibration measurement is repeated for various combinations of calibration
sphere positions and a least squares fit of the measured data is then performed to

obtain the unknown parameters

During the calibration process, the same number of calibration spheres are used
- for each calibration configuration and the calibration spheres will remain on the pen-
dulum platform for any further measurements. In addition, the calibration process
is performed with any required object mounting fixtures in place, such that the only
“addition to the system after calibration is the object for which the moment of inertia
is to be determined. The goal is to minimize the change in system mass between the
calibration measurements and the object identification measurements. The require-
- ment to avoid a change in the system mass between measurements stems from the

fact that a change in pendulum platform load results in a stretch of the attach wires.


file:///midi

146 o CHAPTER 6. EXPERIMENTAL RESULTS

A's“explained in Section 5.2.2, the wire properties were chosen such that the compli-
ance in each wire would be matched as a load is 'applied to the pendulum platform.
Matching of the wire 'compli‘ance reduces .the change in the pendulum'orientation'
and translation within the plane of the platform due to the additional load to the
- platform. Yet, the vertical position of the pendulum platform will translate with
the additional stretch of the wires. This additional stretch will affect the calibratior_l_ ”
~ parameters determined for the pendulum. Reca‘ullifor example Equation 4.19 for the .
torsion pendulum stiffness parameter. The stiffness parameter is inversely propor- -
tional to the nominal pendulum wire length. Due to a stretch of the wires from the
applied load, the wire length will be different for various loading configurations. Care
must be therefore taken to reduce the amount of mass change to the pendulum plat- |
“ form for each configuration in order to avoid a change in the torsion ooefﬁcient for
:the system. Similarly, by malntamlng a constant system mass, the platform rotatlon
axis ‘direction is unchanged during the measurement process.

" The calibration procedure must be repeated if the total mass supported by the
attach wires changes. This includes the addition of the measurement object to the
torsion pendulum platform. After the measurement object is in place on the pendulum
platform, the calibration procedure is then repeated to determine the new torsion

peridulum stiffness parameter. The calibration procedure is summarized as f_ollowS:
1.. Measure frequency for various calibration sphere locai;ions for the pendulum
platform with the mounting fixtures in place. Both symmetric and asymmetric
loading of the pendulum platform with the calibration spheres is required to

determine the pendulum rotation center location. Parameters determined:
. ® Pendulum instantaneous moment of inertia about rotation axis, I,,,.

* - Pendulum stiffness coefficient, k.

'@ Pendulum rotation center location relative to design value, z,, y,.

2. Repeat previous step with measurement ob ject on the pendulum platform. The
pendulum stiffness coefficient will have a new. value due to the stretch of the
wires. In addition, the pendulum rotation center may have changed. Parameters

determined:
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Parameter Unloaded Pendulum Loaded Pendulum  Units

I, 4323 o0 =07 , —  kg-mm?
k11764 0=6.7x10"* 1.0652 0=87x10"* m?/s?
T, 221 0=007 = -197 o=0.09 mm
Yr 316 o0=0.07 012 =009 mm

Table 6.1: Pendulum calibration results.  The unloaded pendulum was calibrated
~ with the sphere mounting fixture at the nominal center location. : Three 3/4inch
spheres were also positioned in the outer calibration hole set for use as trim masses. -
~ The value for I,,, includes the sphere mounting fixture but not the 3/4inch spheres.
The loaded pendulum contained the addition of a 448.9 g sphere placed in the sphere
mount. The measurement object is described in Section 6.3 and was sphere number
six, in configuration number nine.

° Pendulum stiffness coefﬁc1ent k.

° Pendulum rotat1on center location relatlve to des1gn value Tr, Y

The results for the parameters determined in the calibr‘ation process are summa—

p rized in Table 6.1. Three 3/8inch diameter calibration spheres were used for the

~ calibration.! The pendulum platform was calibrated with the sphere mounting fix-
ture in the nominal center location and then with a spherical measurement object

on the sphere mounting fixture. The value for the pendulum instantaneous moment -
of inertia, I,,,, as listed in Table 6.1 includes the spher_e mounting ﬁxture. For the
~ platform without the measurement object in place, the frequencyi measurements were
on the order of 2.53 Hz w1th a standard deviation below 3.7 x 107 Hz. The calibra-
tion results with the measurement object in places had frequency measurerments on
the order of 3.9 Hz with a standard deviation on the order of 2 x 10~ 5Hz or ‘better.
The raw frequency measurements and the calibration sphere location conﬁgurations
are found in Append1x E, Table E.1 and Table E. 2 For comparison purposes, the
SolidWorks estimate for I,,, is 1055. 3 kg-mm? wh1ch 1ncludes the platform ‘sphere
mount, the 3/8inch calibration spheres in hole set one and the 3/4inch spheres in
hole set six. The measured value of I,,, as listed in Table 6.1 corresponds to a value

“.of 10_58.0 kg-mm? for the same configuration.

IFor more information on the calibration spheres, refer to Table B.3 in the Appendix, Section B.3.
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Figure 6.1: BeCu fixed mass center offset sphere. One of the holes drilled to form the
mass center offset is visible in the lower left of the image. The location of the mass
center offset is marked on the surface of the sphere in the upper right of the image.
The great circles drawn on the sphere form the x — y coordinate axes.

6.2 Mass Center Measurement

Although the five-wire pendulum was primarily designed to perform moment of
inertia measurements, the apparatus was also utilized to demonstrate the feasibility
of mass center measurements using a torsion pendulum. As described in Section 4.4.2,
the mass center location relative to the geometric center can be determined by placing
the object far from the pendulum rotation center and then rotating the object to be
measured. In order to demonstrate the ability to perform mass center measurements
with the five-wire pendulum, a sphere with a fixed mass center offset was measured.
This specially designed sphere was generated as a portion of a student project in the
Precision Engineering course taught at Stanford University [5]. As part of the student
course project, a 2inch (50.8 mm) diameter BeCu sphere was machined with a specific
geometry to generate a fixed mass center offset. The sphere was drilled with two holes

forming a ”V” to produce a mass center offset with respect to the geometric center.
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Figure 6.1 showsv the fixed mass center offset 'sphere with one of the holes forming
the ”V” ‘visible. The sphere was designed to have a theoretical mass center offset of
approximately § = 40 um [5]. One advantage tousing this sphere as a mass center
measurement object is that during John Conklin’s PhD. work at Stanford, the mass
center location was measured using the velocity modulation technique. Based on the
» 'ability to measure the hole location and geometry of fhe actual fabricated sphere, the
expected mass center location was estimated by Conklin to be 6 = 44 ym with an
error of approximately 10 pm [9]. By applying the velocity modulation technique for.
‘mass center measufements, Conklin has measured v’the mass ce‘nte_r' offset of this fixed
~ mass center offset sphere to be [10], [9]: | '
Fmel9e = 3.17% — 20.61§ — 35.563 um (6.3)
for a total mass center offset magnitude of § = 41.17 um with a standard deviation of
1.5 um. In addition, the fixed mass center offset sphere has visible markingsidrvawn on
the outside surface to locate the approximate position of the measured mass center.
: 'By knowing the approximate location of the mass center prior to measufements,f'it :
t’ is not necessary to perform a complete set of measurements at various orientations
in order to demonstrate the ability to measure the mass center location using the
torsion pendulum. Thus, the fixed mass center offset sphere can be positioned on the
| pendulum such that the mass center is located at the minimum and maximum distance
from the pendulum rot,a,tio'n center (using @ = 7 and ¢ = 27 in Equation 4.28).
As a result, only measurements for two orientation configurations are required to
“obtain the mass center offset location. In order to solve for the mass center offset
“using measured values of the pendulum oscillation frequency, one can algebra‘ically ,

manipulate Equation 4.29 to obtain a polynomia;l' in 4:

| . N ) oo _ L
0= me ((f?—) — 1) (52 + 2mOR ((ﬂ) COS ¢2 — COS ¢1) 5 -+ Io ((ﬂ) — 1)
w1 wh ‘ ‘ | ;C‘)‘l L

(6.4)
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Parameter. Value Notes , ,
I, 422.8kgmm?®  Measured, I,,, = 2% -
. : » Includes mounting fixtures.
me 569.3g :
a 25.4mm’ Nominal sphere radius.
I, 121.11kg-mm? Theoretical value: 2m,a? A
R 76.89 mm Design value: 2.950inch, (74.93 mm)

w/2r . 2.192462Hz 25 Measurements, o= 1.2 x 107°Hz
wp/2m  ~2.190501Hz 25 Measurements, o = 0.7 x 10 Hz
- ¢1 . wrad . Theoretical

o 27 rad Theoretical

- Table 6.2: Parameters used for mass center offset caleulatien.

With frequency measurements for ¢ = 7 and ¢ = 27, Equation 6.4 can then be used
to ﬁnd ‘the-mass center location within a desired plane It should be noted, that
in order to determine an unknown mass center location within a three—dlmensmnal
_space, repeated measurements are necessary That i is, the ob]ect must be rotated by
a fixed amount for multiple configurations within a smgle plane and then repeated :

for other planes of rotation.

"The BeCn fixed mass center offset sphere was placed onto the pendulum as shown
in Figure 6.2. First, the sphere was placed.with the mass center marking visible
- toward the pendulum vertical wire. The great circles marked on the sphere were
aligned with the vertical wire and a visible laser beam was used for a repeatable
vsvphere orientation. The measurement instrumentation was setup to allow data acqui-
sition overnlght at a constant 26.5°C temperature. The process was then repeated ‘
‘ for the sphere rotated by m, such that the marklng for the mass center was away
from the pendulum vertical wire. Finally, the frequency was obtained for each config-
uration using the darnped sinusoid curve fitting routine as described in Section 5.7.
The frequency measurements had a standard deviation below o= 1.2 x 10~° Hz for a
: freduency on the order of 2.5 Hz. Equation 6.4 and the parameters listed in Table 6.2
were then used to calcula_te the mass center offset magnitude 6. The measured mass

center offset from the geometric"eenter for the fixed mass center offset sphere. was
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Figure 6.2: BeCu fixed mass center offset sphere on the pendulum in the configuration
for mass center measurement. Three 3/8inch spheres are used to create a three point
mount. The geometric center of the sphere is located at a radial distance from the
rotation center equivalent to calibration hole set number five.
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Source » MC Offset Notes

Design Value 40.0pum  Theoretical, [5]
Estimate from Geometry 440pm o= 10pm, [9]
~ Velocity Modulation, Measured ~ 41.17pum ¢ = 1.5 um, [10], [9]
Torsion Pendulum, Measured 40.23 um  Error Estimate: 1 pum

Table 6.3: Comparison of mass center measurement results.
( .

found to be & = 40.23 pm. Although a full error budget on the measureinents was -
‘not performed, it is estimated that the mass center offset measurement has an error
within‘about 1 pm. The'results are consistent with and within the standard deviation
of the measured results as presented by Conklin [9]. Table 6.3 summarizes the var-
ious estimates for the mass center offset of the fixed mass center offset sphere. The
nieasured results indicate that the pendulum can indeed be used for accurate mass

center measurements.

Currently, the limitation on the accuracy of the mass center measurement is that
of the pendulum calibration process and the value for the unloaded pendulum radius
of gyration, I,,,/mr. It should be noted, that the measured results presented here
assume the rotation center of the pendulum is equivalent to the value determined in

.~ the calibration process with a sphere of 448.9¢g pla’ced at the center of the pendu-
" lum. The actual fixed mass center offset sphere measured has a mass of 569.3 g. The
différence in over 100 g will generate a change in the torsion pendulum stiffness coef-
ficient, k, and hence the estimated unloaded penduhim radius of gyr.ation,' L,,./mr.
The additional mass on the pendulum will reduce the absolute value of the measured
mass center offsét, d. Additionally, due to the asymmetric loading of the pendulum, |
it is expected that the rotation center will have shifted from the designed location.
By placing a counterbalance mass symmetric to the rotation center, the shift in the
_rotation center dué to wire loading can be minimized. Yet this pendulum platform
design did not incorporate the ability to locate a counterbalance mass in the direc-
tion opposite to the vertical wire. The actual rotation center and torsion pendulum
radius. of gyration with the measurement object in place can be determined by per- -

forming an additional calibration routine with the sphere located in the mass center
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measurement conﬁguratlon Since the 1ntent of this work is only to demonstrate the
feas1b111ty of mass center measurements usmg the torsion pendulum, the lengthy cal-
ibration routine with the sphere in the mass center measurement configuration was :
not performed. .

In addition, recall that the measurements assumed the approx1mate location of
the mass center was known such that multlple measurements for various orientation
of the sphere were not necessary The overall accuracy of the measured offset will
therefore be slightly affected. It is expected that the results presented here would be
»;. ‘an underest_1mate of the actual mass center offset magnitude ‘obtained from a more
. rigorous measurement procedure. This stems from the fact .‘that the maximum and

minimum separation distance for the mass center location relative to the pendulum

" rotation center was approximately known. An error in the assumed rotatlon angle

¢, will result in an equlvalently reduced mass center offset value.

6.3 Preferred Principal Axis of Inertia Sphere

For gravitational reference sensors, a rotating spherical proof mass may be used.
For such a design it is beneficial to separate the polhode rate from the spin frequency
‘It is possible to. spectrally separate the spin frequency from the polhode rate by
~creating a proof mass with one pr1nc1pal moment of inertia which is at least 10%
greater than the other two [9]. To demonstrate the feasibility of manufacturing a
spherical proof mass with such a moment of inertia difference ratio, a set of spheres
were fabricated as part of a student project in the Precision Engineering course taught
at Stanford University by Professors Dan DeBra and Dave Beach [8]. These preferred -
principal axis of inertia spheres were constructed of either two or three brass parts
and then brazed together to create a complete sphere. Figure 6.3 shows a simplified '
cross-sectional view of the two designs and the theoretical design parameters for the
preferred principal axis of inertia sphere are shown in Table 6.4. Note that the ideal |
simpliﬁed/ geometry depicted does not match exactly the fabricated version. The
internal geometry was modified by adding features to simplify the machining process.

The two-part sphere was machined using a computer numerical control (CNC) mill
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A 027,
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~(a) 2-Part Sphere ' . (b).3-Part Sphere -

~ Figure 6.3: Preferred principal axis of inertia sphere simplified cross-section. The
_cross section view for the 2-part sphere is in the plane of the seam between the
two hemispherical shells. The cross section view for the 3-part sphere is in a plane ’
perpendicular to the plane of the two seams for each hemispherical shell.

“and contains a Illum‘ber;o'f features‘ such as roundé in-order to simplify the machining
process. In add'it‘:ion,‘ the two-part sphere contains features necessary for mating the
two piecesfogether properly. The three-part sphere was machined using a lathe and
does not contain the same machining or mating features. As a result, the two;part
sphere deviates further from thé ideal cross-sectional geometry than the three-paft
sphere. . | | | '

Since, the moment of inértia difference ratio was deSigned to be on the order of
- 10% for preferred principal axis bf inertia spheres, the five-wire pendulum is well-
suited to measure the moment of inertia difference ratio. It should be noted that the
moment of inertia tensor for a spinning spherical drag-free reference is important for

two reasons:
1. Mass Attraction Calculati()ns;

2. Characterization of the Spinning Sphere Dynamics.



6.3 PREFERRED PRINCIPAL AXIS OF INERTIA SPHERE ' 155

' Design Parameter 2-Part Sphere 3-Part Sphére-

- Radius, 7, 25.4mm 25.4mm
~ Inertia Ratio 0.110 - 0.103
(Ip33 - Ipzz)/lpu ST
Material 4 Brass' ’ _ o Brass o

Table 6.4: Preferred principal axis of inertia sphere design paramefters.

To begin the measufement process, the préferred principal axis of inertia spheres'
‘must be m’a;ked._ “Two perpendicular great circles are drawn onto the surface of
the spheres to be used as a coordinate reference. However, the intersection of the
two great circles can not be placed at the center of the polhode paths as descrlbed
in Section 5.4.2. Generatlng the polhode paths using the air bearing process as -
“previously described is not possible with the current fabrication state of the spheres. -
Unlike commercially fabriéated spheres, the two and three part spheres have not yet
- undergone a lapping and polishing procedure. As a result, _the_sphericity and surface
| finish of the spheres is not adequate for generating the torque free motion required
for generating the polhode paths. Without the polhode path markings, the:moment ‘
of inertia principal axis directions for the sphere are unknown. The full inertia tensor
can therefore only be determined by measuring the instantaneous moment of inertia

about a minimum of six different rotation directions as described in Section 4.3.2.

The torsion pendulum is designed to rotate about a s.irllgle axis. As such the
measurement object, i.e. the sphere, must be rotated to different orientations with
respect to the rotation axis. The choice of these orientations must adequately mbap out |
‘the inertia ellipsoid. In order to select the orientations, recall Equation 4.2. Matrix E
A consists of the instantaneous directions of rotation associated with the inertia
measurements. 'From Equation 4.2 it is seen that the selected rotation directions
for the measurements must produce a well conditioned A matrlx In addition, for
- simplicity it is de31red to rotate the sphere relative to the pendulum platform by

simple angles. After calculating the condition number of the 4 matrix for different
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~ rotation angles such as 7/ 3, /4, / 6, it is determined thot the rotation angle of 7/4
should be used.

To position the sphere relar,tivve to the vpendulum platform, a set of body axes are
first established for the sphere, Figure 6.4, and the pendulum plétform, Figure 6.5.
On each of the fabricated preferred principal axis of inertia spheres, the seam is faintly
visible as silver line resulting from the brazing material. One great circle 1s drawn
in a plane parallel to the brazed seam. The origin for the sphere coordinate systém<
is placed at the geometric center of the sphere. The % axis isperpendicular to the
surface of the sphere at the intersection of the two great circles. The 7 axis is along
the great circle drawn pa:ré,llel to the seam. The 2 axis completes the right-handed
coordinate systefn. For the pendulum platform, the origin is located coincident With
the designed mass center and rotation center. The ¢ — j plane is located within the
platform plane, with the 7 axis pointing toWérd the vertical wire. The k axis is vertical _

along the rotation axis, completing the right handed coordinate system. -

Using the coordinate frames fixed to the body frame of the spheré, a set of Euler
rotations are used to denote any orientation of the sphere relative to the pendulum
platform. Denoting c and s for cosine and sine respectively, the Euler transforniation :

matrices for the sphere frame, S, with respect to the five-wire pendulum frame, F,

are:
1o ol  fes o -ss| b sp 0

0 —s¢ co s6 0 b 0 0 1L

where ¢, 6, 1 denote a rotation about the sphere body fixed axes of &, 4, 2 respectively.
Using the relations given in Equation 6.5, a 2, 4, & transformation for example is given
by: | o ‘ |

N S/FmnS/FmS/F |~ S/F |~
Y =T¢/ Te/ Tw J| = ¢éw J (6.6)

o



6.3. PREFERRED PRINCIPAL AXIS OF INERTIA SPHERE 157

Figure 6.5: Pendulum platform coordinate system.
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Yet, in order to determine the moment of inertia tensor for the sphere using Equa-
- tion 4.2, the pendulum axis of rotation, k, must be represented within the body frame
of the sphere. Thus; for the 2,9, # transformation example one. finds the representa—

tion of the k axis within frame S:

11 . z| .

~ S ~

il = [Tﬁi] (] (6.7)
Bl 3 ‘

For the preferred principal axis of inertia spheres a set of nine measurement'r
configurations was performed The Euler rotation sequence for each conﬁguratlon_
~and the resulting k measurement axis is presented i in Table 6. 5. Figure 6.6 shows a
. completed sphere with the great circles and marklngs fore each of the nine orientation
A configurations. A two part sphere as positioned in orientation configuration 1 with
‘the body frame of the sphere aligned with the pendulum frame is shown in Flgure 6.7.
~ For each of the measurement conﬁguratlons the natural frequency of oscillation is
"determlned by applylng the damped sinusoid curve fit routine described in Section 5.7

to the pendulum time response. The measurement data for the preferred‘principal.'

axis of 1nert1a spheres are listed in Appendix E, Table E.3 through Table E.7. By -

,applylng the least squares fit of the measured data, as outlined in Section 4.3.2,
the inertia tensor in the body fixed coordinate system and the principal moments of
inertia are determined. Table 6.6 lists the measured results for the preferred principal
axis of inertia spheres. '

As part of the measurement process, the eigenvectors of the measured inertia
matrix are determined to produce the directions for the principal moments of 1nert1a
relative to the body-fixed coordinate system. Although the body frame may be
somewhat arbitrarily defined, the information contained within the eigenvectors is
quite valuable and additionally provides a cross-check on the measurement results.
Reeall the cross-sectional view of the preferred principal axis of inertia spheres in
Figure 6.3. Clearly the spheres contain planes of geometric symmetry where the mass
distribution is equally symmetric. Due to the symmetric mass distribution about the

: Symmetry planes, the ellipsoid of inertia must possess the sameplane of symmetry.-
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Config Rotation Sequence Measurement Axis
1 : No Rotation 0z + 0y + 12
2 o= 72 0z + 1y + 02
3 o= 7/2 Y= 7/2 1z + 0y + 0z
4 0= n/4 | T+ 0§ + 52
5 = —n/4 \ St o+ 0+ 2
6 6= 7w/2 Y= w4 =t + By + 02
7 p= w2 Y= -—x/4 S+ 0+ 02
8 Yp= -m/2 ¢= 7/4 02 + »§ + %
9 Y= -m/2 ¢= -=u/4 02 + Z§ + =2

Table 6.5: Orientation configurations for sphere measurements.

159

Figure 6.6: Preferred principal axis of inertia sphere marked with nine orientation

configurations.
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Figure 6.7: Preferred principal axis of inertia sphere on platform.



161

6.3. PREFERRED PRINCIPAL AXIS OF INERTIA SPHERE

‘sazeyds eryiaur jo sixe redourid peirejaid I10] s)msal ,ﬁHmEm,Smamz ‘99 m,ERH

v

[“x]

680 1 1 1 Togozt ]
TF11°0 210 10 09°€TT T9SH°0 . 8# Mredg
, i 01| L L1l L STeIT)
~ feoo 1 Tvo 7 [woer ] o
Z611°0 61°0" 20 86°CIT 68770 9# 31ed-g
i 76°0] | il L L9211
o 1ee 1 [rv 1 [eosger : ] |
PLIT0 €80 90 LT°0TT OFFF0  T# Med-g
i 89z| | 62] | 65601
~ [osz 1 [o 1 [ersar ]
G92T1°0 Ge'T 9T 98'601 EYPY0 £ Med-C
| so0] | 1o | L7601 _
620 1 Tot 1 [w8ve1 ~ ] |
8T0T°0 z8°G 99 : €Q°ETT 9677'0  T# 11ed-C
I 69%| | sl L B 4111
Ty y—0T % 2—0T X W8 L8 Sy
||uun~lnnn~ @&N\wab _”&N_ ot . ,mhmﬂﬂmm



162 _ . o CHAPTER 6. EXPERIMENTAL RESULTS

 For the 2-part sphere, is is known that the direction of the Iﬁaximum principal
moment of inertia must be in the plane of the seam if the sphere Was perfecﬂy
| manufactured and of homogeﬁeous density. Since the body fixed 7 axis is drawn" on
top of the seam, the direction of the principal moment of inertia mﬁst be within the
body z—y plane. The resulting eigenvectors for each of the 2¥part sphérevmeasureme_nt
data are shown in Figure 6.8‘and Figure 6.11. As expected, the maximum momenf
of inertia direction has a nearly zero component along the body Z direction and thus
is within the bbd‘y x — y plane. | , , |
For a 3-part sphere of ideal geometry and bf homogeneous density, it is known
_that the direction of the maximum principal moment of inertia must be in a plane
- that is perpendicular to the seams, or rdther perpendicular to the z — y body frame.
Figure 6.12, shows the results for the 3-part sphere prinbipal axis directions. As
~expected, the direction for the maximum principal moment of inertia ié'primarily

along the body # axis.
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Bl r11ipsoid
D - .- Ill i ‘
e I22

‘ : | =—133

Sphere = TF/B = [¢,, éz,véa]
(Dimensionless)

[ 0423 0.089 —0.901
2Part #1 | 0.872 0230  0.433
—0.246 0.969 —0.020

Figure 6.8: Principal axis measurement data for 2-Part Sphere Number 1. The mea-"
sured rotation matrix from the principal axis frame to the body fixed frame, T7/5.
The axis labels correspond to the directions of the body fixed frame and the axis
values correspond to the eigenvectors. :
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Ellips_oid
| ===1I11

- Sphere TF/B = [éy, &3, €3]
(Dimensionless)

: 0.861  0.408 0.304
" 2-Part #3 [-0.262 —0.156 0.952
| ~0.436  0.900 0.028

 Figure 6.9: Principal axis measurement- data for 2 Part Sphere Number 3. The mea-
sured rotation matrix from the principal axis frame to the body fixed frame, TF/5.
The axis labels correspond to the directions of the body fixed frame and the axis
values correspond to the elgenvectors
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BEErllipsoid|
| =-—-T11
''''' I22
=T33

Sphere TF/B = [é,,é,,63]
_(Dimensionless) -

- ' —-0.273  0.437 0.857
2-Part #4 0.372 —0.774 0.513
~0.887  0.459 0.048

‘Figure 6.10: Principal axis measurement data ‘forr' 9 Part, Sphere’y Number 4. The
measured rotation matrix from the principal axis frame to the body fixed frame,
TP/B. The axis labels correspond to the directions of the body ﬁxed frame and the

axis values correspond to the eigenvectors.
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g - | BB FEllipsoid
b | ===T111
- 122

Sphere TF/B = [é,, &3, &3]
(Dimensionless)

0.552 —0.177 . 0.814
2-Part #6 |0.796 -0.180 -0.579
. 0.249  0.967  0.042

Figure 6.11: Principal axis measurement data for 2-Part Sphere Number 6. The
measured rotation matrix from the principal axis frame to the body fixed frame,
TP/B. The axis labels correspond to the directions of the body fixed frame and the
axis values correspond to the eigenvectors.
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BEllrllipsoid
=-=T11

: . . : ) X I22
14 - |——133

Sphere . TF/B — [é1, €2, €3]
(Dimensionless)

: | 0.861 0.497 0.111
3-Part #8 0.496 —0.867 0.044
—0.118 -0.017 "0.993]

Figure 6.12: Principal axis measurement data for 3-Part Sphere Number 8. The
measured rotation matrix from the principal axis frame to the body fixed frame,

TP/B. The axis labels correspond to the directions of the body fixed frame and the - °

axis values correspond to the eigenvectors.



Chapter 7
Measurement Error

No measurement value is complete without a discussion on the associated ‘mea-
Surement errors. Although the results discussed in Chapter 6 are for physical mass
properties, the actual parameter measured is-that of the pendulum oscillation fre-
quency. The desired mass properties are theh‘calculated from the frequency measure-
fnents. In praCtice it has beéh observed that thé standard deviation on the inertia

_tensor components is typically a factor of th‘ree“to five timeé‘ worse than the observed
- standard deviation of the frequency measurement.s. As aresult, this chapter will focus
 primarily on the error associated with a frequency measurement and the change in -
frequency as the fundamental error metric. | ' '

- Tt is important to recognize that the error sources for a measurement of observation ‘
may be either systematic or random. The systematic errors cause the measurement
value to differ from the true value by a fixed amount. The measurement value myay be
biased, for example due to the measurement method or due to improper‘calibration. A
systematic error will affect the accuracy of a measurement. An improper calibration of
the five-wire torsion pendulum will therefore affect the acéuracy of the measurement.
‘Random error affects the actual précision of a measurement result and is reflected
in the standard deviation of the measurements. Random vibration of the five-wire
torsion pendulum is an example of a random error, generating a deviation between
sequential measurements. In the end, the repeatability of a measurement apparatus

is the true indication of the precision.

- 168
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- For the five-wire torsion pendulum, the ability to calibrate the five-wire pendulum
is thé primary limitation to the absolute accuracy» of the medsurements perf_drmed.
For the épherical measurement objects, the ability to mark the object with accurate
orieﬁt‘ation marks will also contribute to the final accuracy of the mass property mea-
surements. Still, the calibration of the apparatus is the key limiting factor. Since it
is assumed that systematic offsets such as calibration can be reduced with additional
measurements or by using cahbratlon measurement objects, this chapter will focus
on the errors assomated with the precision of repeated measurements. That is, the
repeatablhty and corresponding effects to the standard deviation of the frequency ‘
measurements are of interest. A few of the error sources associated with the five-wire
“torsion pendulum as related to measurement of the thsional frequericy are discussed
“in the following sections. A summary of the primary error sources and the approx-

imate impact on the measured pendulum natural freqﬁe’ncy‘is listed in Table 7.1.

7.1 Temperature

In order to estabhsh the change in pendulum osc111at10n frequency due to temper-

ature changes, we return to Equatlon 4.16 for the pendulum natural frequency

gr

where m,, and I, is the mass and instantaneous moment of inertia about the rotation
axis for the pendulum respectively. The frequency of oscillation is therefore a function
of the wire length, L, and the distance from the pendulum rotation center to the
wire attach point, r. A reference natural frequency, w,, is defined to be the natural

B frequency with the nominal wire length, L,:

9 _ Mpgre . (71)
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A Est’irliate with

Error Source ‘Without
" _ Countermeasures Countermeasures
- Temperature "6 x 107°Hz PID Provides
_(Theoretical) per 1K 15mK Stability
" Tempefatire 1x104Hz 75%x10%Hz
- {Observed) per 1K per LK -
' ' PID Provides .
15 mK Stability |
Temperature & 6 x 105 Hz PID Provides
Platform Tilt per 5mK - 15mK Stability
Vibration > 5x 10~° Hz 1to 0.5 x 1075 Hz
Foundation Tilt 4 x10°Hz Not Observable
From Temperature o
Air Currents - >1x10~4Hz Not Observable
Nonlinearity 1 x 1074 Hz ~ Not Observable
(Theoretical) per 1deg

Table 7.1: Estimated noise source contributions based on experimental observations.
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Parameter Value Notes
L, 11.43cm Design value: 4.5 inches
r 10.16 cm Design value: 4.0 inches
L my . 124.08g Measured .
I, 398.3kg:mm?  SolidWorks Estimate
Cag 4.5¢-6 K~ Tungsten '

Table 7.2: Pendulum properties.

‘The wire length will change due to fluctuations in temperature, resulting in a change
in the oscillation frequency. The frequency due to a change in the nominal’reference

mp.  gr . _ : ‘

~ wire length A_L(is therefore:
- | —_— 2
I, Lo+ AL (7.2)

2
W =

Assuming a linear thermal expansion for the "Wires, the change in the original wire

length, L,, due to a temperature change AT is related by:

AL =aqiATL, o (13)

where oy is the linear thermal expansion coefﬁcient for the material. Substituting .

the relationship for the change in wire length due to material thermal expansion into

- Equation 7.2, the resulting frequency due to a change in temperature becomes:

[ . 2
My gr

I, Lo(1 +arAT) (7.4)

2
Wr

Using Equation 7.4 and the‘ values in Table 7.2 for the pendulum parameters, a 1K

change in temperature results in a theoretical frequency change |w, — wr| on the

order of 6 x 1078 Hz. In practice however, the variation in frequency for a change

in temperature is larger than the theoretical calculation. Figure 7.1 shows the cor-

relation between the pendulum natural frequency and temperature over a range of -

0.55°C at 25°C. Although the simpliﬁed'theoretical model for the pendulum fre-
 quency dependency on temperature was linear, the measured results indicate a clear

nonlinear depe‘nd‘en(_:y. The deviation from the observed temperature dependency and

N
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» “ © 2008-08-23 to 2008-09-06
 2.546060 — ? ? ~ e

2.546040

N

.546020 -

.546000

Frequency [Hz]

.545980

[\

2.545960

2 .54594 i i i i i i
>45 %4.9 - 25 25.1 25.2 25.3 25.4 25.5 25.6

.~ Mean Temperature [°C]

% Observed

7.315e-04 x2

+ -3.704e-02 x + 3.015e+00

Figure 7.1: Pendulum temperatui‘e calibration prior to compensation.
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the theoretical calculation is a result of two primary factors:
"o Pendulum wire geometry.
- o Pendulum foundation stability.

The e}cpected frequency change was calculated due touav wire elongation from a change

in temperature. The five-wire pendulum has different length wires. As such, there

will be a different change in wire length for each wire due to a temperature change.

Thus, not only is there a change in frequency due to a "changeAin wire length from

temperature effects, but there will also be a change in frequency associated with a
change in the orientation of the penduhim rotation axis. Since the wire.cohﬁgurafion

is symmetric about one axis, the platform will tend to tilt around the pendulum 7 axis

(Figure 6.5). In,additi'on, fluctuations in the other directions will exist as thermal
- equilibrium of each wire is achieved with the ambient air. |

The change in oriéntation of the pendulum due to teinperature is easily verified

by monitoring the vertical and horizontal position signal produced by the quad photo

diode sensor. _Figure 7.2 for example shows the variation in the null positioh"of the
pendulum platform as measured by the qudd;photo sensor over the course of five

hours. The air temperature sﬁrrounding the apparatus for the course of the five hour

measurement is depicted in Figure 7.3 and shows about a 6 mK drift in temperature

over the ﬁve—hdur measurement. period. As expected, a change in temperature ré—

sults in an observed change in the vertical and horizontal null position on the quad

photo diode sensor. In fact, the null to‘p/b”ottom signal on the quad photo detec--
tor provides a more sensitive temperature ineasurement than thé PtRTD used for

temperature measurement. Figure 7.4 shows the temperature and quad photo sensor

drift over a five-hour measurement. Both the left/right and top/bottom ﬁull position
measurements from the quad sensor are related to temperature fluctuations. The
tb‘p/’brottom signal is alsrd a true repréSer_ltatiOn of the pendulum rise in the direction
of the vertical wire and the left /right signal is a representation of a pendulum rota-
‘tion due to the mismatch in the wire elongation between the symmetfic angled wire
~pairs. Thus.the relationship between the pendulum frequency and the quad sensor

top/bottom signal is used to gain an estimate of the systematic change in pendulum



174 ‘ - CHAPTER 7. MEASUREMENT ERROR

R s e
KPS NN ASCAN NV SRSV SO
N S T
oomsal
JPYPTTY NN TSNS N TS WO E
0.0728F ,,,,,, o ..... _____ -

0.0726F - ............. P, ‘ .......... ‘ ........... iy

Mean Left/Right Offsét ‘[volts/volt]

(@]
(=)
~J
oo
~

:00 08:00 09:00 10:00 11:00 12:00 13:00
GMT .
data_scope_chl_2008_10_01_0700_10.dat to

data_scope_chl_2008_10_01_1201_26.dat
(a) Left/Right

w
[&,]

N
wn
T
»
'Y
®
L

[
wm
T
1

o
w
T
x

0 i i i i i
07:00 08:00 09:00 -10:00 11:00 12:00 13:00

GMT . ;
data_scope_chl_2008_10_01_0700_10.dat to

data_scope_chl_2008_10_01_1201.26.dat
(b) Top/Bottom -

Mean Top/Bottom Offset [volts/volt)

. Figure 7.2: Pendulum platform null position change due to temperature.
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. data_temps_ZOOS_J.O_O1_0700_13 .dat to
data_temps_2008_10_01_1201_28.dat
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Figure 7.3: ‘Temperature drift for Figﬁre 72 .

‘rotation frequency due to a combined_temperature change and a change in pendulum -
tilt. The correlation between frequéncy and the qﬁad sensor top/ bottom Sighal is
~ depicted in VF‘igure 7.5 and Figure 7.6. The actual relationship depends on the load-
ing configuration of the pendulum platform and the temperature stability. Figure 7.5
shows the relationship over a five hour run for a symmetrically loaded pendulum us-
‘ing the calibration spheres in the fourth hole set from the center. The temperature
for the "measuremenj"c exhibited a steady drift over the range of 12mK which éqilates
to approximately‘ 2.6 x 10-5Hz for a 5mK Change_. Figure 7.6 shows the relation-
ship between three nightly runs and the top/bottom signal where the temperature
was within a standard deviation of 3mK over each of the five-hour measurement
runs. The variation in mean temperature between the three different runs was within
5mK, which was within the limitations of the sensor. The same asymmetric loading

configuration was used for each measurement. The results in Figure 7.6 indicate a
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Figure 7.4: Qilad sensor top/ bottom null position change due to temperature.
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Figure 7.5: Pendﬁlum-frequency vs. null top/bottom position. Symmetric loading.
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2008-11-03_H7_5._12 to 2008-11-05_H7_5_12
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Figure 7.6: Pendulum frequency vs. null top/ bottom position. Asymmetric pendu—
lum loading: : :

6 x107°Hz frequency change for a temperature change of approx1mately d5mK.

In addition to the pendulum wire geometry, the stab1l1ty of the pendulum foun-
“dation and the correspondmg_temperature dependency contributes to the pendulum
frequency variation. The pendulum foundation stability depends on both the stability - |
of the actual pendulum wire attach foundation as well as the optics table on which
the pendulum is located. For example, a change in the laboratory temperature was
observed to change the level of the optics table. In addition,‘ the pendulum wire attach
foundation optics plate is separated from the optios table through vibration isolation f
mounts, which are further described in Section 7.2. The temperature stability of the .
isolation mounts affects the stability of the platform level. In‘practic,e, it was found
- that by maintaining the temperature of the vibration mounts, the standard deviation

in frequency measurements could be reduced by approximately 4 x 10~ Hz.
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Device: Model Description
Power Supply ' HP 6038A Max Voltage Set to 60V
' I ~ “Max Current Set to 2A
'Heater Strips HK5173R110L12 Polyimide Thermofoil™
: ' 1109, 12inch x 2inch
Temperature Sensor Omega 747 Thermistor

Table 7.3: PID temperature controller hardware.

Temperature Control

In order to reduce air temperature fluctuations é,t the pendUIum, a simple insulated
chamber is used to enclose the five-wire appaljatus. The main outer chamber consists
of 5cm thick 'polystyrene Within the outer chamber isthe optics plate on-which

“the five-wire apparatus is constructed ‘An inner chamber on top of the optics plate' '
composed of Reflectix™, a reflective bubble wrap insulation, encloses the pendulum '
- and optics. o ' | | ' ‘

" T further reduce the platform oscillation frequency temperatufe dependency, a
PID. temperature controller was placed within the chamber containing the five-wire
pendulum. The PID controller was implemented using a power supply and two Minco
flexible heater strips attached to a 45cm by 75cm by 0.5cm aluminum plate. The
PID controller sends a current control signal to the power supply attached to the
Mincoheater strips. Additional details of the hardware implementation is found
in Table 7.3. For the PID software implementation, the standard form of a PID

controller output u(t) was used:

t

l'/e('T)dT+Tazde(t) (7.5)

u(t) = Kp e(t)+Ti g
0

where e(t) is the error from the desired set value and the actual measured value.
The proportional gain, Kp, derivative time, Ty, and integral time, T}, PID controller
' parameters are found in Table 7.4. The PID controller was implemented using a

sample and hold technique, with a cycle time much less than the system response time.
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~ Parameter Value Units

Proportional Gain- K, 5.0  dimensionless
Derivative Time T; 200.0 seconds -
Integral Time T; 1250.0  seconds
Cycle time dt 4.0 seconds -

Table 7.4: PID temperature controller gains. See Eq. 7.5

The PID parameters were obtained using a manual tuning process. The proportional
gain was first increas‘ed: with the ‘other parameters set to zero until instability was
observed. The proportional gain was then reduced by at least a half. The derivative
term was then adjusted until instability was observed and then reduced. Finally, the |
integral term was adjusted for a reasonable time response without excessive overshoot.
The time response of the PID temperature controller us1ng the determined control_‘
gains is depicted in Figure 7.7. o '
- Before starting pendulum frequency measurements the PID temperature con-
troller is started. The system has a short temperature time constant on the order of
minutes which is associated with the w1res and a longer temperature time constant
on the order of several hours, wh1ch is associated with the support foundation and
measurement optics/fixtures. As a result the system is maintained at a constant
temperature for about 1day pr1or to mak1ng measurements Even though pendulum
oscillation frequency measurements are not conducted during the PID preheat, the
pendulum is pulsed at regular intervals at the same rate the pendulum would be
pulsed during measurement runs. Through experimentation, it was found that start-
- ing the oscillation of the pendulum after an inactive period generates a disturbance
to the stagnant air, causing a 15 mK or more change yin temperature of the chamber.
Thus, by continuously pulsing the pendulum, the conditions inside the chamber are
consistent during measurements. _ 1 |

As shown previously in Figure 7.1 the temperature calibration for the pendulum
_indicated a quadratic dependency, which is contrary to the theoretical linear relation-
ship. It was found through experlmentat1on that the exhibited quadratic relationship |

was due to motion of the pendulum support ’frame from temperature fluctuations.
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Figure 7.7: PID temperature controller step input time response.

Specifically, »t‘}‘le optics plate and the rubber vibration isolation pads below the optics
plate. (described in Section 7.2), were the root cause. Thus, in addition to maintain-
_ing the témperature (i)ff the surrounding air with the PID controllef, the temperature
stability of the supporting foundation structure is also required. The heat input to
‘the system via the PID controller must therefore be isolated from the optics plate
containing the-experiment and Asupporvting structure. The aluminum plate with the
heater strips is isolated from the optics plate by placing the heater plate onto a _Set of -
thermally non-conductive pads. Figure 7.8, shows the final témperature correlation
for the pendulum after implementing the PID controller and taking care to reduce
temperature fluctuations of the opticé plate and supporting structure. The final )
 correlation bétween‘the pendulum oscillation frequency and te‘mperature’resul‘ts in
the expected theoretical linear relationship. The expected linear relationship shown
in Figure 7.8, is primarily -a result of mainteiining the temperature stability of the

supporting structure. -
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Figure 7.8: Pendulum'temperature calibration results using PID controller. The
frequency measurements are for the combined pendulum platform with sphere fixture,
3/8inch calibration sphere in hole set 1, and the 3/4inch trim mass spheres in hole
“set 6. :
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Figure 7.9: Observed earthquake in measurement data.

7.2 ! Vibrational» Disturbances

Random vibrations at the pendulum foundation due to seismic disturbances and
human activity _eausethe pendulum to oscillate. -As described in Section 5.7, the
penduliim frequency is measured by applymg a nonlinear curve fit to the expected
damped sinusoidal response. If the pendulum response does not match the expected
dampedisinusc)idal response, due to a disturbance in the phase or amplitude of the
signal, then the curve fitting procedure will be inconsistent. Disturbances to the pen-
dulum response via random vibrations therefore limit the accuracy of the frequency
- measurement procedure. For a sense of the pendulum sensitivity to ground vibra-
" tions, consider the results from two lab measurements. Figure 7.9, shows for example

the effect on the meaSurement data from a magnitude 3.2 earthquake near Antioch,
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- Figure 7.10: Observéd disturbance in measurement data.

CA, U‘SGS'eve-nt hc51199149. The pendulum response ‘clearly shows t‘he presence of o
the earthuake induced ground vibrations for an epicenter about 100km away from
the Stanford laboratory. ‘More frequent disturbances to the pendulum are impulsive‘
shocks as a result of hallway lab doors slamming shut. Figure 7.10 shows a slight
disturbance to the pendulum response about 120 seconds into a data run. The dis-
turbance is thought to be the effect of a stairwell door down the hallway slamming
shut. Processing of the raw data containing the disturbance generated a fréquency
measurement which was more than 1 x A10_14 Hz different than the other measure- |
ments. from the same data acquisition run containing measurements with a standard

deviation of 1 x 10~° Hz. -

J
b
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Pendulum Design for Vibration Environment

Pi‘oper‘design is the key to minimizing the susceptibility to random vibration.
During the initial de51gn for the five-wire apparatus, the natural frequency of os<:1lla—
tion for the pendulum was selected to be below the existing vibrational noise sources. - .
Before the five-wire pendulum was fabricated, the vibrational noise floor of the ta-
ble to be used was recorded using a Mark Products L4C seismometer.- Figure 7;11 B
and Figure 7.12 shows the seismic horizontal ‘and, vertical noise floor respectively of
a granite table located within Stanford’s End Station II lab space. |

When selecting the natural frequency of oscillation for the pendulum, the high- -
est frequency below the noise sources in the amplitude spectral density. noise plot
is selected for the pendulum natural frequency. The. pendulum frequency is easily-
trimmed to a lower value after the platform fabrication by the addition of mass- d1s—l
tant from the rotation center. From Figure 7.11 and Figure 7.12, it is seen that the
vibrational noise source for the granite table has a peak around 10 Hz and 30 Hz in the
horiiontal and vertical directions respecfively. As a result the target design natural
frequency for the five-wire pendulum was chosen to be no, greater than 3 Hz. Due to
the required wire geometry for the five-wire pendulum a hlgher pendulum natural
- frequency results in a more compact and smaller apparatus As the equlvalent pen-
dulum wire length is increased, the long wires on the five-wire pendulum can become
very long." For example; with an equivalent pendulum wire length of ll.4 cm for a
pendulum natural frequency of almost 3 Hz, the long wires on the five-wire pendulum
are nearly 30.5cm long. As a result‘, the targeted ‘pendulum natural frequency. for the

five-wire pendulum was designed to be on the order of 3Hz. |

Challenges with Vibrational Dist_urbances

A granite table in Stanford’s End Station'1I was originally planned as_a" work
surface ‘for the five-wire pendulum. ‘Unfortuna‘pely, due to lab .space availability and
limited budget constraints, the experiment had to be moved to an alternate location,
'consisting of an optics table with standard non-vibration isolation legs. This alternate

optics table is located within the newly constructed Astrophysics building at Stanford.
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Figure 7.11: Vibration noise floor of granite table, horizontal direction.
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Figure 7.12: Vibration noise floor of granite table, vertical direction. -
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" The vibration noise floor of the Astrophysics building and the optics table were found
to be significantly different than the originally planned location. Figure 7.13 shows
for example the vibrational characteristics of the lab floor and the optics table in the
newly constructed Astrophysics building basement. The vibrational spectrum for the
- floor and optics table in the Astrophysics building indicates a much higher vibration
level above approXimately 6 Hz. These high frequeney vibrations in the building are
produced by the building air handler system and are slightly reduced when the outside
~air temperature does not exceed approximately 18°C oifer ‘the course of a day. The
lab in which the measurements were taken is located on the basement level of the
Astrophysics building and below this level is the sub—basement. In the building the
~air handler system is attached directly to the cement ceiling, which is effectively the
floor to the level directly above. As a result, vibrations from the air handler system
- of the lab below are transferred to the floor of the lab above. For comparison, refer to
Figure 7.14, for the Vibration chafactefistics of the floor in an AStrophySics building
lab located on the bottom level. The spectrum in Flgure 7.14 exhibits the expected
hlgh frequency roll-off characteristics.

“After the actual constructlon and assembly of the ﬁve—W1re pendulum on the optics
table in the Astrophysics building, it was found that the vibration noise level was too
high for running the pendulum. First; the 3.1 Hz pendulum natural frequency was too

- high to avoid interference from the vibrationel disturbance peak at 4 Hz. In addition,
the translational modes of the pendulum, whieh are much higher than the pendulum
torsional naturel frequency, are magnified by the high frequency noise 'obeervedv in
the spectrum. As a result, the pendulurn response was not a clean damped sinusoid. -

: Due, to the presence-of the high vibration levels in th.e laboratory, a passive isolation

system had to be designed.

Passive Vibration Isolation

With any signal measurement, it isdesired to have a large signal to noise ratio. -
For vibrational disturbances to the pendulum, the signal to noise ratio can be eas-
ily 1ncreased by pulsing the pendulum at larger amplitudes. Yet, for the five-wire

pendulum a trade off is made between the initial induced amplitude of rotation and
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Figure 7.15: Vibration isolation stack. _

the error associated with the small angle assumption. The pendulum oscillation am-
plitude is set to be greater than the noise signal, trading vthe error due to random
- vibrations with a systematic error of known magnitude due to nonlinearities. The
errors associated with the small angle assumption can later be corrected if necessary.
As a result, some degree of vibration isolation is necessary in order to allow small
rotation angles and a low vibration noise floor. For the five-wire pendulum, passive
vibration isolation was implemented to reduce the excitation from floor vibration due

to seismic and human activity.

A tiered vibration isolation system was designed, Figure 7.15, consisting of an
optics table, a 2ft by 3 ft by 4.5inch thick granite.slab, a 2ft by 3ft by 2inch thick
" aluminum optics plate, and a 2 ft by 3 ft by 1/2inch thick aluminum optics plate. The
. five-wire pendulum foundation and required optics are attached directly to the final -
thin optics plate, such that the entire optics and pendulum assembly move as a Single
entity. A passive vibration isolator is then placed between each tier. At the lowest
interface beﬁween the optics table surface and the granite slab, four 1/4inch thick

Sorbothane sheet pads are used for vibration isolation. The Sorbothane material
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is an excellent isolator for a wide renge of frequencies and for the heavy load of the
granite slab. At the next interface between the granite slab and the thick optics plate, V
four hemispherical rubber isolators are used. The hemispherical isolators provide
additional low frequency isolation and are chosen to accommodate the mass of the
supported optics plate and pendulum structure. '

At the final interface between the thick optics plate and the 1/2inch optics plate
with the five-wire pendulum, there are severa_I simple herdrubber*disks.*The disks
pr0vide little vibration isolation and were used only for additional clearance between
the layers. The Mounts are kept at the same temperature to ellow the use of rubber-
like mounts, which tend to have better low frequency vibration suppression. The
temperature of the isolation mounts is maintained through the use of the PID tem—
perature controller on the thick optics plate as discussed in Section 7.1.

The vibrational noise ‘spectrum at the pendulum platform foundatlon is shown in
Figure 7.16. Although the spectrum now indicates an increased level of the peak due

to human activity at 4 Hz, the high frequency noise content was reduced

Additional Vibration Countermeaéures

In addition to passive vibration isolation, the pendulum response Was impro‘ved‘ by
trimming the natural frequency. The oscillation frequency was trimmed by the addi-
“tion of three 3/4inch diameter 316 stainless steel spherical trim masses, Table B.3, in
" the outermost calibration holes. The trim masseé were added in a symmetric fashion -
about the pendulum mass center and reduced the natural frequency from 3.1 Hz to
approximately 2.5 Hz near a local minimum in the vibration spectrum depicted in
* Figure 7.16. The frequency reduction was enough to allow a clean damped sinusoidal
response for 1000 seconds With an initial amplitude 0.5 mrad or less. Relocation of the
experiment to a laboratory space on the ground floor is expected to provide a more -
effective solution in reducing the influence of vibrational disturbances. A relocation
of the experlment to the ground floor is therefore recommended

In addition to the passive vibration isolation countermeasures improved results
were obtained by simply taking measurements when human activity was at a mini-

mum. Measurements are primarily performed at night and on the weekends to help |
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reduce the random vibrations associated with human activity. Human activity causes
a vibration inte_ractioh with the pendulum around the range of 3 Hz to 6 Hz and is the
source of the peak at 4 Hz seen in the spectrum measurements. The 1AM to 5AM
time frame proved to be the beét time for running the experiment. in order td avoid
‘vibrations due to humaﬁ activity. As a result, software was written to fully automate

the acquisition procedure.

The root mean square speCtral density of the pendulum response is shown in
| Figure 7.17. The sv‘pectrum'is the final result after the application of passive vibration
isblation; addition of trim masses, and temperature control via the PID controller.
" For compdfison, Figure 7;18, shows the spectrum with the penduhim plac»ed,l on the

assembly mounts (as described in Section 5.3) to restrict the p_endulum motion.

7.3 A1r Currents

Air currents from air conditioning systems or simply from a person walking past
the apparatus disturb the pendulum and induce oscillation. Disturbdnces due to air‘
currents are reduced by placing the apparatus within an enclosure. The thérmal
enclosure desci‘ibed in Section 7.1 proirides_ adequate isolation from the sjlrro_unding
environment. In addition to air currents disturbing the pendulurri, fluctuations in .
the surrounding air affect the grating angular sensor described in Section 5.5.2. As
 air passesv through the laser beam path, density variations cause a-change in the
index of refraction, which generates an artificial signal at the‘sensor.‘ The variation
due to air currents is observed in the FFT data plots as a wide peak and the exact
" frequency depends on the air velocity. To reduce the affect of air currents, originally
a small enclosure was placed around the path of the laser beam. Later, when the
internal thermal chamber described in Section 7.1 was constructed, the laser beam
enclosure was removed as the internal thermal chamber was found to be adequate for

eliminating the air currents.
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7.4 Dynamical Nonlinearity

For a simple pendulum with length I, it is known that the pendulum period is
given by T; = 27r\/7 where small motion, || << 1, is assumed to linearize the.
equations of motion. The subscrlpt ! on the period T is used to denote the period of
the linearized solution. From Greenwood [25] the pendulum period for the general

case Where the amplitude, 0 is not necessarlly small is given by:

T =4\/§K(’9) - - (7.6)

The subseript nl on the period T is used to denote the period of the nonlinearized

solution. K (k) is the complete elliptic integral of the first kind with « defined as:-
K=sin— -, R (7.7)

where 6, is the max1mum amplitude.. By comparmg the period for the linear and non-
hnearlzed solutlons one ﬁnds a simple ratio for establishing the error inthe frequency

associated with assuming small amplitude motion.

Tnl Wy 2 o . »

—_— = —= —K ' 7.8

7= o= K() (78)
" Using Equation 7.8, one finds the associated change in frequency between the

linear and nonlinear solution:

z“wz(gf‘%v‘l)’ o '(7-9)‘

For a maximum amplitude of one degree, the resulting change in frequency is Aw =
w; X 1.9x 1075, Thus, for a linearized natural frequency, w;/ 27, on the order of 5 Hz or

less, the error is on the order of 107* Hz. It is therefore important to ensure the small
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angle assumptlon has not been violated. Since the amphtude of the motion i is recorded |
in the measurement process, it is easy to verlfy that the small angle assumptlon is'sat-

isfied to the first order. A representative pendulum response as recorded by the quad ,
photo-diode sensor and normahzed by the total laser 1nten81ty on the sensor is shown
m Flgure 7.19. Section A.2 provides the calibration between, the normahzed sensor
voltage signal and pendulum rotation angle. For the pendulum response shown in .
) Flgure 7. 19 the 1n1t1al signal amplitude of approximately 0.5 volts/volt indicates the
. pendulum rotatlon amphtude does not exceed 0.25mrad for a typlcal measurement .
‘run. The correspondlng difference in the 11near and nonlinear solutlon is therefore |
less than 107 Hz for a linearized natural frequency, wl/ 2, on the order of 5Hz or ~

less
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Since the system natural frequency is a slight function of the oscillation amplitude, -
it is also important to ensure a consistent initial amplitude for the five-wire torsion
pendulum. By generating a repeatable pendulum response, a consistent measured
oscillation frequency will result. As discussed in Section 5.7, a repeatable pendulum
response is achieved by sending a small electromagnetic disturbance to the pendulum
platform. The initial oscillation amplitude of the five-wire pendulum for a series of
measurements as recorded by the quad photo-diode sensor is shown in Figure 7.20.

The results indicate a mean value of 0.2435mrad for the pendulum oscillation am-

- plitude, with a standard deviation of o = 2. Ourad over 50 measurements during a

24 hour period. The limitation on the repeatability of the initial oscillation amplitude.
'is dominated by the initial 'steady state condition of the pendulum prior to sending
~ the actuation signal. U‘sing the mean oscillation amplitude of 0. 2435 mrad :I:2d for
‘the range in-initial oscillation amplitude, the difference in frequency for Figure 7. 20
1s less than 10~° Hz. Therefore, due to the repeatable actuation system the variation -
in the measured frequency between measurements is negligible compared to the other

error sources
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Initial Amplitude,

Figure 7.20: Variation in pendulum initial_ oscillation amplitude.
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The plot shows

~ a mean amplitude of 0.2435mrad with a standard deviation of ¢ = 2. Ourad The
results were recorded using the quad photo sensor. The preferred principal axis of

inertia sphere number six was posmoned on the platform dunng the measurements.
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Future Work |

81 'Measuremen't'Apparatus ‘Modiﬁc‘atio‘ns': B

As with any design revision, issues arise from which the designer g'ains insight into

- the system. During the integration and testing phase, a few issues came to attention |
Whichishould be implemented'in future 'rev‘isions" of the five-wire apparatus. The
following sections describe the issues encountered and suggest possible modifications '
on‘future appar‘atus revisions. Table 8.1 summarizes the changes described 1n the
| following sectiorls andvindicates'the-importance of implementation for future designs.
It is believed that with the addition vof‘ a simple vibration isolation system and a
-vacuum chamber, that the standard deviation on the frequency measurements for the

* five-wire torsion pendulum could ea‘sily surpass the level of 2e-6 Hz.

8.1.1 Vacuum Chamber and Temperature Isolation

There are a number of observed characféristics which indicate that a Vacullm
chamber at a modest vacuum level would improve the performance of the five-wire
- pendulum. The most prominent ‘being the local air stability and temperature varia-

- tions. For example, as the pendulum is pulsed after a having been at rest since the
previous night data acquisition run, an immediate drop in temperature is observed.

The stagnate air within the chamber is disturbed by the motion of the pendulum.

200
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Nice to Have , Essential

Lab. Relocation
Vibration Isolation
Vacuum Chamber
: Temperature Control
Gratlng Orientation
' Wire Angle
~ Tilt Reduction '
- Object Fixtures

Table 8.1: Importance of future modifications. .

With the current setup, it is therefore essential to pulse the pendulum at the same
- rate the measurements are to be made to ensure proper stability of the surroundmg
air-and temperature In fact, if the pendulum is pulsed at -every 25 minutes dur-
 ing the nightly data acquisition runs but the pendulum is pulsed at a different rate

dur1ng the day at every 15 m1nutes a change 1n the temperature will be observed '

~ during the nightly runs, result1ng in a frequency standard deviation change of up to -

le-5Hz. This temperature stablhty induced by the motion of the pendulum would
be eliminated by placing the entire apparatus within a vacuum chamber, resultlng in
a more consistent frequency measurement. In addition, better temperature stability
can be obtalned as the vacuum chamber container temperature can be controlled to
ma1nta1n a consistent thermal input to the system..

An additional benefit of using a vacuum chamber is the elimination of air currents.
It is difficult to completely eliminate all air currents in a large sealed volume. Even
with a‘ proper container to shield the apparatus from air currents induced by human
act1v1ty and air condltlomng systems, there will be air currents within the container
from thermal convection and pendulum motion. ‘ '

Lastly, the systematic error from the buoyanoy force induced on the pendulum
platform from the presence of the surrounding atmosphere would be eliminated by
plaoing the five-wire pendulum inside a vacuum chamb_er. Maintaining a constant air
-pressure around the apparatus will aid in producing vconsistent frequency measure-

ments from day to day.
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8.1.2 Vibration Isolation

Although the tiered vibration system described in Section 7.2 was adequate for ini-
tial results, it is highly recommended that the apparatus be vconstrueted in a location
with lower vibration noise than the current laboratory. Alternatively, an expensive
commercial vibration isolation system or the use of a granite table should be reconsid-
ered for future precision measurements. As mentioned in Section 7.2,,7the apparatus
was moved from the granite table to an alternate optics table in a newly constructed‘
building due to lab space availability. The isolation provided by the alternate solution
was marginally adequate for the operation of the pendulum. A location on the bot- .
tom floor of the building or a granite table will provide a far superior vibration noise

level. Compare for .example the seismie measurements for the optics table.used in

the experiment, Figure 7.13, with the seismic measurements for the granite table on ‘

vs}hich the apparatus was originally constructed, Figure 7. 11 and Figure 7.12. From .
Figure 7.11 it is seen that the granite table prov1des about an order of magnltude
better vibration isolation for the frequencies above approx1mately 6 Hz. Although the
higher frequencies are above the natural frequency of the pendulum, the harmonics
of the naturel frequency corresponded with the higher undamped frequencies. In ad-
dition, the translational frequencies of the pendulum are excited by these vibrational
frequencies. Use of the granite table for vibration isolation would also eliminate the
need for the tiered vibration isolation system described in Section 7.2. As mentioned
in Section 7.1, there is a coupling between the temperature stablhty of the vibration
| 1solat10n mounts and the stability of the platform level. By removing the isolation
mounts, the temperature stability effects on the measurements would be reduced con-
siderably., In addition, the need to shift the frequency of the pendulum to a lower
frequency in order to avoid peaks in the vibration spectrum is eliminated and the
added trim masses may no longer be necessary. ,

The natural frequency of the pendulum can be trimmed by the addltlon of 1nert1a
yet the frequency can only be easily reduced, not raised. In addition, when the
measurement object is placed on the pendulum platform, the oscillation frequency is
reduced. The pendulum frequency was chosen to be as high as posslble in order to

reduce the wire length and hence the size of the apparatus. When the atpparatus was
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moved to the standard optics table, the lowest frequency noise floor from vibration
became 6 Hz, which is too close to the pendulum natural frequency for a consistently
-clean reeponse. Therefore,. for future revisions,. it is recommended that the natural
.freQUen_cy be redliced in order to further spectrally separate the pendulum signal from
* the vibrational noise sources. Alternatively, if the high frequency noise is adequately
suppressed and no prominent low frequency peaks exist, the natural frequency of the
pendulum can be 1ncreased substantially, thereby taking advantage of the 1/ froll off

for a hlgher signal to noise ratio.

8.1.3 Platform Tilt Reduction and Wire Angle

The orientation of the rotation axis is affected by the level of the penduhim plat-
form. By using the pendulum platform assembly mounts described ‘in Section 5.3,
the pendulum platform is positioned level to the optics plate containing the entire
ﬁv_e-‘Wire pendulum apparatus. Yet, since the platform hangs from the support struc-
ture, the pendulum platform will obtain a level positien relative to the gravitatiOnal a
- vector. The system is leveled by making sure the eptics platform is level. The initial
static level condition is achieved by the use of a simple bubble level.

The level condition of the optics plate will however chahge due to a number of error -
fseurces, including thermal variations and floor/building motion. Due to the five-wire
design, the pendulum is the least stiff along the positive ¢-axis, in the diréction from
the rotation center to the vertical wire shpport. Refer to Figure 6.5, for a coordinate
system of the pendulum platform. If the pendulum support structure is rotated in
a positive sense about the j-axis using the >right hand rule, the pendulum platform
- will translate along the pOsitivef-direc’tion. In the five-wire design, the pendulum
platform is stiff along the negative i-axis and in both the positive and negativej'-
axis. An attempt to rotate the platform support structure about the E-ams results
primarily in a rotation of the pendulum platform about the vertical k-axis. Therefore, |
in future pendulum versions, it is suggested to angle the vertical wire slightly inWafd
toward the rotation center in order to increase the stiffness along the positive 2-axis.

In addition, since it is known that the direction along the positive i-axis is sensitive
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to a‘tilt, the pendulum should be oriented on the support structure accordingly. For
‘example, it was found that the optics table on which the pendulum structure was built
tends to tilt along the short direction of the table. At the time the pendulum was

- constructed, the tilting nature of the optics table was unknown and the i—axis of the

' pehdulurn platform was oriented along the short direction of the table. In hindsight, -
the pendulum should have been oriented 90 degrees from the current positiori, such -
that the sensitive direction to tilt was not aligned with the short direction of the
table.

In general, the actual wire geometry deserves reconsideration for any future five-
wire design. The wire geometry utilized for this work was selected based primarily
-from- the promising characteristics exhibited by the original student pro]ect design.
The five-wire geometry produced a pure rotational motion with the translational
modes shifted to freduerr’cies‘ well above the pendulum rotation frequency. During
the course of }th‘iS work, vit was found that the asymmetries associated with the Wire
geometry lead toother chell‘eng'es,. such as tilt or differential wire stretch due .to
loading or temperature variations. During the course of this work, an alternative
“wire design was considered, where all the wires were of the same length and oriénted
symmetrically about the pendulum platform’."d This was Design 3, which was briefly
noted in Section 5.1. The symmeﬁric wire lerlgth reduces differential tension in the
wires or changes in orientation due to differential Wire' elongation. Yet during analysis;
the design proved to inadequately constraln the pendulum translational modes.. The -
symmetrlcal pendulum design exhibited low frequency rocklng modes, Wthh were
on the same order as the desired torsional frequency. Without the proper spectral -

separation, the desired pure rotation could not be achieved with the initial symmetric
| design. Thus, some work should be devoted to investigating other designs with a low
friction method for producing the pure rotation. Future designs to be considered
should also include low friction magnetic bearings or air bearings. Still, there are
applications where the issues associated With.the asymmetric wire geometry are not
a limiting factor in the precision of the desired measurement. The issues associated
with the asymmetric wire geometry translate primarily into the ability to calibrate the -

pendulum for moment of inertia measurements. Thus, the five-wire torsion pendulum
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‘design may be useful for any application requiring a pure rotation about an axis.
The mass center measurement application for the five-wire pendulum d1scussed in

~ Section 4.4. 2 and Section 6.2 is one such example

' 8.1.4 Grating Orientation

The grating angular sensor described in Seetien 5.5.2 is only‘sensitive to trans-
“lations in the direction of the grating norm. For the assembled configuration of the
- five-wire pendulum, as depicted in Figure' 5.26, the grating norm is aligned with the
- radial direction from the rotation center to ‘t'he vertical suppor‘t wire. Consistent with
the coerdinate system depicted in Figure 6.5, the grating norm is aligned with the
i-axis. As mentioned in Section 5.3, the positive E-axjs is the direction of the pen- .
~ dulum that is least stlff and most susceptible to translations due to pendulum tilt.
- In addition to ‘the translational motion genefated by a tilt of the pendulum support’
structure, a similar tilt/translation effect is observed due to temperature. changes as
described in Section 7.1. Thus, in order to reduce sensor error ‘due to pendulum
translation along the grating norm, the grating should simply be rotated by 90°,
such that the grating is ahgned with a stiff translational direction of the pendulum.
| It should be noted however, that the current grating orientation allows for mon1tor1ng
* of the temperature fluctuations by measuring the drift in the. quad photo-detector. -
Re-orientation of the grating will no longer allow for this feature. As such, the pro-
~ posed grating re-erientation should be implemented after the addition of improved

temperature stab1l1ty or the addition of a vacuum chamber

Should a redes1gn of the grating holder occur, a des1gn which allows two gratings
to be oriented simultaneously with their respective norms.at perpend1cular directions
~ should also be considered. By using two signals, any noise sources due to the transla-

_tion of the pendulum could be subtracted out of the science signal. In addit"i'on’,v the
‘translation of the pendulum rotation center due to an applied load could then also

be monitored.
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‘ 8.1;5 Trim Masses

Trlm masses were added to the pendulum platform near the wire attach points,

The tr1m masses have the followmg funct1ons

1. Shift the natural frequency of the pendulum to a de31red frequency away from

V1brat1on IlOlSG sources.

2. “Pre-stress the wires at the attach points to pfevent a change vinbsignal due to

asymmetric loading of the calibration spheres.
- 3. Shift mass center to the rotation center.

The trim masses were. “added primarily 16 shift the pendulum natural frequency and- -
to ::av‘oid a change in signal due to ,asymmetr_ically loading the platform with the
calib_‘ration spheres. . Prior to the 'machining of the pendulum platform, it was not
known that large trim masses Would be necessary. Only a small trim mass was placed
| on the grating holder to assist in trimming _the mass center of the ﬁnal‘ apparatus.
In future revisions, there should exist specific holes on the pendulum platform:
for the trim spheres.  The trim masses must be added in a symmetrlc fashlon, to
avoid shifting the‘ mass center of the entire apparatus. Currently the trim spheres
are placed in the outer calibration holes The required amount of trim mass dictated .'
" a sphere dlameter large enough to prevent the use of the adjacent cal1brat1on hole.
By creating a set of holes devoted solely for the trim masses, it can be ensured that
_the trim masses will not conflict with the calibration procedure or the measurement ,

object placement and still provide a symmetric loadmg of the platform.

- 8.1.6 Object Fixtures

" The measurement object fixtures, discussed in Section ‘5.4,v have the dual pur-
pose of repeatable object positioning and placement with respect to the pendulum
platform. For objects with distinguishing geometrical featufes, the fixtures can be

designed to kinematically constrain the object’s orientation. The fixtures designed

for the cylindrical shaped object as described in Section 5.4.1 are such a design, where
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each fixture is designed for a specific object orientation. ’Thve difﬁéulty with the cylin-
drical fixtures in Section 5.4.1 is that in order to change the Qrientatioh of the dbject,
the fixture needs to be changed. Even with a r'_epeat‘able positioning method for the
ﬁxture‘ to the platfdrm, the configuration change results in an associated measure-
ment uncertainty: As discus‘sedr in Section 6.1, it is essential to maintain a chStaz;t E
- mass for the pendulum platforrh and associated ﬁbxtur‘es. ’ If the conﬁgﬁration of thé
platform changes, such as the total mass, or fixture location, the pendulum will re-.
_quire a re-calibration. For the cylindrical fixtures, each time the orientation of the
object needs to be changed, a new fixture is placed on the pendulum. The con-
figuration of the pendulum has therefore changed with the addition and removal of
fixtures and the pendulum requires re-calibration. The process not only necessitates
-unnecessary measuréments, but also introduced additional uncertainty into the final
- measuremeﬁts. As a result, for kinematic brientation fixtures, it is desired to have-

‘one fixture for the object and various orientations. -

For the spherical measurement object, with ~nd geometrical distinguishing features,
N the dbject was marked to allow orientation positioning. As described in Section 54.2,
the polhode ‘paths were used to intelligently'positiori a set of perpendicular great cir-
‘cles on the sphere to be used as'a coordinate reference. The coqfdinate reference -
frame creates the basis for placing additional orientation marks onto the sphére fbr |
~ orientation. These additional marks howe{ier, need to be placed at well-determined
angles relative to the coordinate systém. For the spheres measured in this work, the
. great circle marking apparatus was used to generate the additional orientation marks
- at 7/4 increments. These angles have limited accuracy, as the great circle marking
appai‘atus was only designed to create two perpendicular gréat circles. In order to
generate the additional é,ngle markings, a triangle fixed at ‘7r /4 radiané was placed onto.
the apparatus. The location of the /4 marks was adequate for this work, as the abil-
ity to position the spherical object with the visible laser bedm has a larger érror than
* the ability to place the 7/4 marks. For future measurements, it is ‘suggested to de-
sign a more accurate method for marking spherical shaped objects at pre-determined
angles relative to the great circle markings. More accurate markings on theé sphere

will increase the overall accuracy of the moment of inertia measurements. -
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8. 1.7 Continuous Feedback Drive

Due to damping in the system the pendulum w1ll exhibit a damped sinusoidal -
response. The pendulum was specifically designed with a higher stlffness than typlcal
single wire torsion pendulums, such that small dlsturbances such as local grav1tat10nal ,

‘mass attraction effects do not affect the pendulum response. The result is however a
limited data length from a single pendulum pulse. This in turn limits the precision
on utilizing'an FFT for data reduction, as the frequency determination will be bin
width limited. , - " |

It may be useful to investigate the advantages of performing frequency extraction. -
via an FFT of longer data acquisition runs. One way to increase the amount of time
for a useful-signal to noise ratio measurement is to overcome the damping effects by
continuously providing additional 'energy to the pendulum via the excitation coils.
The pendulum oscillation amplitude will thereby be maintained. Feedback from the

- pendulum position will be necessary, as a periodic pulse generated at reguiar intervals
will cause a discontinuity in the .r‘espo‘nse. A simple analog controller implemented
using op-amp circuity is sufficient for a continuous feedback d'ri\vfen‘syste’m In fact,
only a proportional controller is necessary to utlhze the position feedback signal from
e1ther the PSD or quad sensor. ‘

With a continuous feedback analog controller in place, a little consideration must
be given to the actual phase of the pendulum response at which the proportion‘al

- controller provides the signal If only a proportlonal controller is used from the
pendulum position response the result would be a sinusoid matchlng the pendulum

‘response, with the maximum signal apphed at the maximum rotational displacement |
of the pendulum. This configuration however is not ideal, as the ,direction~ of the
current in the excitation coils would need to be switched at the maximum rotation
position of the pendulum. Issues with timing on the transition could disturb the

- pendulum response. This intuitively is similar to pre-ignition or detonation within

four cycle combustion engines where an excitation to the system occurs prior to the
reversal of the piston direction.
A better solution is therefore to shift the phase of the feedback 81gnal by 7/2,

such that the excitation signal is zero at maximum rotation amplltude and a max at
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the zero crossing of the pendulum. A propOrtiondl signal applied'near the maximum
- velocity should also have a minimal affect on the péndnlum résponSe. Although a
phase shifting circuit could be implemented in analog hardware, a more appropriate
solution is to use the pendulum velocity as the signal for a continuous feedback
controller. The pendulum velocify signal is simply the position signal shifted by = /2.
Without the pendulum velocity directly available, the der,iva‘ut‘ive of the pendulum
position is necéssary, which again is éasily obtained via analog op-amp ciréuitry. The

signal can then be fed into the proportional feedback confroller.

8.2 Recommended Future Research

8.2.1 Mass Center Measurement

* In Section 4.4.2 it was shown that a torsion pendulum caLn be used for determining
the mass center offset from the geometric center. Section 6.2 further showed initial
- proof of concept measurement results for the mass center offset. There were two

issues with the initial mass center measurement results:
1. Measurements should be performed for multiple configurations.
2. Pendulum calibration in mass center measurement configuration is required.

The first item is easily solved by simply repeating the frequency measurements for
different orientations of the measurement object within the rotation plane as described
in Figuré 4.2. There are no distinguishing features for orienting the snherical shaped
measurement object. Thus, in order to orient the measufefnent object at specified
orientat'i(v)ns,‘ an apparatus for accurately marking the desired orientations is necessary.
This is the same issue as described in Section 8.1.6 and should be a simple task.
The second item deals with the pendulum calibration routine. Clearly, the ab-
solute accuracy of the measurements are limited by the calibration routine. For a
proper measurement, the calibration routine should be repeated for the measurement

object in place on the pendulum platform. In so :doing, any shift in the pendulum
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rotation center location, or any change in the direction of the rotation axis is ac-
counted for. In addition, in order to reduce any shift of the rotation center from the
nominal location, the pendulum requires a counter balance for measurement object.
Since the pendulum was not initially designed for mass center measurements, there
is no symmetric location about the rotation center for adding a counter balance. A
" future pendulum platform for use in mass center measurements should contain two
mounting locations for mass center. measurements, located symmetrlcally about the
~ rotation center. A sphere of similar mass can then beplaced in the other mounting
location with a fixed orientation throughout the measurements For the current wire
conﬁgurat1on it is suggested that the additional mass center mounting holes be a

- mirror of the current conﬁguratlon to ensure proper loadlng of the wires.

8.2.2 Satellite Design for Mass Attraction

In order to meet challenging drag-free satellite design reQulrements for a min-

imized contribution to the drag-free performance from mass 'attraction effects, it is- ..

‘important to beg1n early with the initial satellite design. During the layout of satellite
components and early satellite des1gn it is essential to have an engineer present with
basic knowledge of gravitational mass attractlon effects. Although this work does not
go into detail of the actual satellite design process for minimizing the gravitational
- attraction force and gradient, there are a number of points which are beneficial to

understand

- First it is clear that separation distance is the simplest method for reduc1ng grav—
_itational attraction effects. The first drag—free satellite Triad-1/ DISCOS reduced the |
influence of gravitational mass attraction effects by moving the disturbance compen-
sation system to the center of a long boom, thereby increasing the separation distance
from the drag—fre'e proof mass and the majority of the satellite components, while re-
taining a gravity gradient stabilization for the spacecraft. Where the use of a boom
is not practical or feasible, the same concept still holds. It is beneficial to mo_ve those
components which are expected'to have a large contribution to the mass attraction

uncertainty to locations far from the drag-free proof mass.
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In addition, symmetry is the friend of an engineer working with gravitational mass
attraction. Clearly, the symmetrical placement of similar components relative to the
drag—frée reference will help to reduce the overall static gravitational attraction force
on the test mass and reduce the amoilnt of mass required in the form of trim masses.

In addition, ona component level it is beneficial to produce components which exhibit
symmetry with réspect to the mass distribution. Recall fnr instance the observations
made in Section 3.6 and in Section 3.10. In Section 3.10 it was shown that a cube
and a sphere exhibit similar gravitational attraction effeéts through a third order
expansion. - The similar characteristics were a result of the -cube having ide’nt‘ical
principal moments of inertia similar to that of a pérfect sphére.‘ In Section 3.6 it was
also shown that higher order expansion terms equate to zero for objects with identical

~ principal moments-of inertia. Thus, in order to approximate the attraction effects of
a distribnfed body with a point mass, the error associated with such an idealized -

- assumption is reduced when the distiibuted body is symmetrical. Inaddition, if the

object exhibits 'a“plane of symmetry such that only two of the principal moments
of inertia are similai, then tiie gravitational attractiqn affects my be reduced by ‘

intelligently choosing the orientation of the component.

| The use of regular geometric shapes was also used for the gravitational mass at-
traction analysisi of Triad-1 /DISCOS [22]. Although the mass attraction analysis for
DISCOS utilized geometric shapes simply for the theoretical calculation of the attrac-
tion force and gradient, it should be noted that certain geomeﬁrical shapes also exhibit
gravitational attraction properties which are beneficial to the satellite designer. As
shown by Fleming et. al [22], there are a number of geometries which have invspeciﬁc 3
directions either zero force or gradient contributions to the gravitational attraction
analysis. These objécts include for example spherical shells, plano-convex spher_ica,l‘
sections and cylinders. Of special note is a toroid geometry or a homogeneous spher-
ical shell. Such geometries are quite useful for time varying mass quantities, such as
' prop}ellant tanks. There exists a location at the center of the toroid where the gradi-
ent of the attraction force is identically zero. For a pérfectly homogeneous spherical
shell, any location‘ within the shell has a zero contribution to the force and gradienf.

A toroidal shape is a more practical solution, but achieving an even distribution of
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the propellant within the tank is another challengihg task. Indeed, Triad-1/DISCOS
, utilized toroidal shaped propellant tanks, which were placed symmetrically about the
- proof mass [15], [22]. ‘



Chapter 9
Final Remarks

Gravitational mass attraction property predlctlon for drag-free satelhte design has
hlstorlcally utilized theoretlcal calculatlons based on ideal mass propertles Typlcally
the attraction calculation additionally assumes»the drag-free reference mass can be
represented by a single point mass. Such assumptions are unacceptable for future
precision dreg—free satellite missions. Chapter 3 therefore provided the equations for
determining the gravitational mass attraction between two general distributed bodies.
The deve10ped equations also generate a foundation for including mass property mea-
surements into the mass. attraction calculation. This work for the first time prov1des
a complete procedure for 1ncorporat1ng physical measurements into the mass attrac-
tion calculations, such that the assumed ideal geometry and density dlstrlbutlon for

components are included in the mass attraction computations.

Precision mass property measurements are clearly essential in drag—free satelhte
.. design for a number of reasons. Chapter 5 therefore prov1ded the design for a ﬁve-W1re :
torsion pendulum. The apparatus was primarily designed for measuring the moments
of inertia and was also shown to provide mass center measurements.” As shown by
the experimental results in Chapter 6, the designed torsion pendulum is capable of
precision mass property measurements. Measurementresults from the prototype tor-
sion pendulum apparatus matched state of the art moment of inertia measurements.

For the mass center measurements, the results were better than typical mass center
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measurement devices. Section 6.3 provided precision moment of inertia measure-
ments of prospective drag-free reference .mass ‘geometries. These measurements not
only verify the mass properties to ensure proper shifting of the polhode frequency
out of the science band as needed for missions such as LISA, but are also essential
to the gravitational mass attraction disturbance budget calculation. In order to aid
in improving on the five-wire pendulum design for future applicationsv, measurement
error sources for the five-wire pendulum were presented in Chapter 7. .In addition,
insight into current limitations and future proposed modifications to the pendulum
design is described in Chapter 8. Future work to suppress laboratory envirOnmental
disturbances are expected to make the measurement apparatus capable of exceeding ,
- state of the art moment of inertia measurements by approximately an order of mag-
| nitude. The prototype ﬁve-wire pendulum apparatus was not primarlly designed for
mass center measurements. Still, application of the pendulum to mass center mea-
surements exhibited promising potent1al With minor mod1ﬁcat1ons to the pendulum ‘
platform or with a similar five-wire design, the five-wire torsion pendulum may be
capable of achieving state of the art mass center measurementlevels. Some insight
into the necessary steps for improving the'ﬁve-wire pendulum design for mass center .

measurements was presented in Chapter 8.

By combining the methods developed in this work for gravitational mass attrac-
tion calculations, Part I, and the precision mass property measurements using the
five-wire torsion pendulum, Part II, a complete solution for analyzing the mass at-
traction propert1es of h1gh—performance drag-free satellites is established. Although
a detailed computation of the gravitational mass attraction properties for an entire
satellite were out of the scope of this work, the methods presented in this work will
~ enable the detailed analyses required for high-performance drag-free satellites. The
techniques presented in this work provide a solution to one of the challenges associated
with achieving the demanding drag-free performe,nce levels necessary for gravitational
wave observatories such as LISA. First, the incorporation of measured mass proper-
ties into the mass attraction calculations will provide a result which incorporates
unknown density inhomogeneities‘ and variations in geometry. The analysis is no

longer a purely theoretical model requiring additional verification by measurements,
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but rather the analysis is an indirect measurement of the mass attraction forces and
gfadients. Secondly, provided the mass properties ofyl satellitei components have not'b
changed, the described method allows for repeated analyses of the attraction proper-
ties for the entire satellite as component locations or orientations are altered during
the deSign process. Onée the mass properties of a sat.ellite, component are established
and tabulated, the mass attrac}tioh properties may be simply updated for satellite

configuration changes. Finally, by reducing the overall uncertainty associated with
| the satellite mass attraction properties, the contribution to the overall satellite drag-
free-performance budget may be reduced further. The total drag-free performance
level is a combination of all the disturbances acting on the drag-free reference mass.
Thus, by reducing the uncertainty in the mass attraction‘contribﬁtion to the overall
dré,g—frée performance, other challenging disturbance requirements may be relaxed,ﬁlk o
which otherwise may not have been reduced to required levels in Qrder tb satisfy

mission requirements.
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A.l' Tetrahedron Volume Mdmentsj'

Fdr completeness, the \}olume moments ‘through the second order of a tetrahedron
are stated here. Refer to Sheynin_ [49] and Tuzikov [66] for a full derivation of the
tetrahedron volume moment.calvculation formulz;m, Equation 3.13. A tetrahedron is
defined with one vertex at the ofigin. Each 'ofithe other three vertexes are defined
by coordinate points @, b, ¢, and the matfix A is defined to be the coordinates of the
vertexes such that' A = [a,b,¢]. The volume moments for the tetrahedron are given
by 49} o

1
M0,0,’O = 6 det A

1 .
Ml,‘O,O = 54‘ det A (a1 + bl + Cl)

1 .
MO,I,O = iz det A (a2 + b2 + C2)

1
M(),O,l = -2—4 det A (a3 -+ b3 -+ C3)
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1 | ’

Mg,oyo = @ det A (af + b? + C% + a1b1 +a;c; + blcl)

M0,270 = @ det A (a% + bg + Cg + azbz + q202 + bgCg) :
1 .

Mo,o,z = %0 det A (a§ + b§ + ¢§ + asbs + azcs + b3c3)

ba,1b2 + aicy + bice + asby + ascr + b201)v

2

1. |
Ml,l,O = 6—0 det A (alag + b1b2 + 1o +

Mgy =2 ’ L ab b by + ascy + b
Mo =% det A (a1q3 + bybs + cic3 + a103 + a;1c3 + 1(;3 .:42. as »1 +asc; + 301)
1 . ' b b bt ,
Ml,O,l = % det A (a2a3 + b2b3 + cye3 + Q203 + @aC3 + 02C3 ;- a309 +‘ 3Cy + 3c2>

A2 Grating Angular »Sensor Calibration

In order to extract the time history of oscillation for the ﬁve—Wire pendulum, it is
- not necessary to know the exact translation between the sensor signal and a rotation
angle. Yet for the five-wire penduium, a small angle assumption‘ is made to simplify
the dynamics. As such, a _calibration of the sensor voltage signal to the rotation‘angle
is desired to ensure the assumption of a small rotation angle has not been violated.

The grating angular sensor described in Section 5.5.2 is composed of a quad photo

detector and a position sensitive diode. Both of the sensors are calibrated using the

same procedure. The sensors are calibrated by using an optics micrometer stage.
Contact between the micrometer stage and the pendulum platform is ‘estﬂablished‘ at
the vertical wire attachment by a simple round Allen head fastener as depicted  in
Figure A.l. As the micrometer stage is translated, a corresponding rotation of the
: peﬁdulum platform is achieved. Using a small angle assumption, the translation dis-
tance of the micrometer stage is related by Az = rAfd, where r is the dist\ancé from
the rotation center to the point of contact, z, the amount of translation produced by
the micrometer stage, and 6 the amount of pendulum fqtation in radians. The result-
ing sensor signal is recorded for the quad photo detector and the position sensitive

~ diode. A value of r = 96 mm was used for the distance to the point of contact from »
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Figure A.1: Pendulum platform setup for sensor calibration.

the rotation center. For the quad photo detector, the resulting left/right position is
also normalized by the detector total intensity in order to reduce errors due to laser
fluctuations or from the laser beam leaving the detector surface area. Since the PSD
was only a secondary sensor, the signal was not normalized by the total intensity
during the measurement runs. Refer to Figure A.2 and Figure A.3 for the position
sensitive diode and quad photo detector calibration curves respectively.

Each sensor is mounted on a micrometer stage for proper alignment with the
incoming laser beam. The position sensitive diode is located on a single axis microm-
eter stage for translation along the length of the sensor. The quad photo detector is
positioned on a two-axis micrometer stage for adjustment both in the horizontal and
vertical directions. Note that the null position of each sensor is controlled through
the positioning of the micrometer stage. As such, only the slope of the calibration

curves is of interest.
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Figure A.2: PSD sensor calibration curves.
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Appendix B
‘Mechanical

B.1 Mechanical Drawingsv

The mechanical drawings presented heré are not infended to be fully complete for V
a machinist to manufacture the parts. These drawings rather present a number of the
important features and dimensions associated with the parts. The majority of the _-
parts were produced on a computer numerical control (CNC) mill and were generated
by an éxpeft (one of the best you can find) research and development model maker.
The parts were produced using éither a Lagun 310 CNC 3-Axis Mill or a Tree 310
CNC 3-Axis Mill. Each CNC was Coupled‘with a Heidenhain Control. A Handsvedt
Sinker EDM was used to cut the 0.015inch (0.381 mm) slot in each wire mount to

create the wire clamp feature-(Figures 5.10, B.4 and B.5 ). Simple parts such as the . . . -

pendulum platform assembly mounts or the first generation proof of concept grating
‘angular sensor parts (inot pictured here) were created by hand on a Bridgeport Series 1.
millingvmachin'e. The estimated machining time for each of the componen‘ts is listed
in Table B.l.‘ | ‘ ,

Spécial thanks to Emmett Quiglevy, Evan Jackson, Dave Mayer and Stevan Spremo
for their help in making the designed parts a reality. In addition, their valued com-
ments had an influence on some of the final design details,‘ especially for making
the final product into one which could be machined and still function as originally
intended. '
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22 APPENDIX B. MECHANICAL

Component , Hours Figure ,
Pendulum Platform = 25 -B.1,B.2,B3
Angled Wire Mount (Pair) o - B4

Part L . 20 :
- EDM of Wire Clamp Slot. 8 :
Vertical Wire Mount - . D B.5

Part =~ 10

EDM of Wire Clamp Slot =~~~ 5§
Grating Mount Top - ' 6 ~ B6
Grating Mount Bottom 10 . B.7
Sphere Mount Fixture ' 10 ~ BS
Platform Assembly Mount (Three) 12 B9

Table B.1: Estimated machining time for pendulum componénts.
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Figure B.1: Mechanical Drawing: Pendulum platform.
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Figure B.3: Mechaniéal Drawing: Pendulum platform, calibration holes.



- APPENDIX B. MECHANICAL

226

Slot Hole is 0.028"

Drill #0 Clearance .

diameter at 0.2" deep 0 - © 2 ., ___.\_qo%*jxm_cm 23
ab" and Drill Tap
Slot is 0.2" deep and , . #0-80 ofter -
0.015" thick D . _
0.15 : . |
16 A0 A \M)> : B
o [ , A\ o
v B ‘ Q)
0 U L\
‘ / _ N v :
o - 1 ©
N\ )
: N
b N , _
ol 0.40
030} . e : v
°l | o043
., 0.323 o
_ @ 0.09 THRU

3.15

R
\d

All Dimensions in Inches

4-40 czo - 2B THRU.

So 0312

oo,ﬁoéo 12680

-

Two "tabs" are symmetric

\

Detail A
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B.2 Measuremént 'Apparatus Parameters

Parameter - Value Notes
. Pendulum Inertia - - I, - 398.3kg-mm? SolidWorks Estimate

Pendulum Mass m, 124.08g Measured, Assembled
Sphere Mount Mass m, 11.73g ~ ~ Measured :
Characteristic Wire Length L, 1143mm De'.sign value: 4.5inches '
Vertical Wire Length L 114.3mm Design value: 4.5inches
Short Wire Length - - Ly 76.2mm Design value: 3.0inches
Long Wire Length Lz 304.8mm - Design value: 12.0inches

. Wire Attach Point Radius T _'1,()1.6-mn'1"__m ‘ Design,value: 4.0inches
Radius to Mass Center M(_)unt‘ R 749mm Désign value: 2.95 inches

Hole Set 1 Radius - HS1 36.8mm . Deéign value: '1.45inches
Hole Set 2 Radius HS2 44.5mm “Design value: 1.75inches
Hole Set 3 Radius HS3  54.6 mm Design value: 2.15inches
Hole. Set 4 Radius HS4 64.8mm Design value: 2.55 inches
Hole Set 5 Radius - HS5 74.9mm Design value: 2.95 inches
Hole Set 6 Radius ~ HS6 85.1mm Design value: 3.35inches
3/8inch Cal. Sphere Mass - m, 3.6lg ~ Measured

7/16inch Cal. Sphere Mass my 5.63g Measured -
1/2inch Cal. Sphere Mass my, 8.39g Measured -

3/4inch Cal. Sphere Mass ~ m; 28.19g ~~  Measured

Table B.2: Measurement apparatus parameters. ‘



' B.3. BILL OF MATERIALS

B.3 Bill of Materials

Item

Descripfion

| thyl Part Number |

Ball Bqaring
Ball Bearing

Ball Bearing

Ball Bearing

Diameter 3/8 in.

Sphericity 0.0001 in.

316 Stainless

Diameter 7/16 in.

Sphericity 0.0001 in.
316 Stainless

Diameter 1/2 in.
‘Sphericity 0.0001 in. |
316 Stainless '

Diameter 3/4 in.

Sphericity 0.0001 in. |

316 Stainless

3

M‘cMaster:s 96415K77

McMaster: 96415K78

McMaster: 96415K79

McMaster: 96415K81

Table B.3: ‘Bill‘of Materials: Calibration and Trim Mass Spheres.
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| Ttem | Description | Qty | Part Number
Straightened | Diameter: 0.005 in. . ' ,
Wire 304 Stainless SmallParts: GWX-0050-30-05
Tungsten “SmallParts: TW-005-30 -
Straightened | Diameter: 0.010 in. ‘ , -
- Wire 304 Stainless SmallParts: GWX-0100-30-05 |-
: Tungsten ‘SmallParts: TW-010-30
-| Straightened Diameter.: 0.013 in. NE A ‘ .

- Wire 304 Stainless ‘SmallParts:. GWX-0130-30-05
: - Tungsten | SmallParts: TW-013-30
Hypodermic | 1.D. 0.00625 in. 7 SmallParts: HTX-30R-06-05

Tubing | O.D. 0.01225 in. -
- 304 Stainless
Hypodermic | 1.D. 0.00725 in." SmallParts: HTX-28R-06-05
Tubing - O.D. 0.01425 in. : ,
304 Stainless
Hypodermic | 1.D. 0.01225 in. SmallParts: HTX-24R-06-05
" Tubing | O.D.0.02225in.
304 Stainless
| Hypodermic | 1.D. 0.013 in. - SmallParts: HTX-23R-06-05 -
Tubing 0.D. 0.025 in. ‘ ‘
304 Stainless
Hypodermic | I.D. 0.01625 in. SmdllParts: HTX-22R-06-05
Tubing | O.D. 0.02825 in. |
' 304 Stainless

Table B.4:v Bill of Materials: Support Wires.




B.3. BILL OF MATERIALS

v | Item

. Description

Dowel Pin
Spring Pin
Cap Screw

Hex Screw
Hex Screw

Set Screw
Round Spacer

Pin Vise

1/32 in.- Diameter
Length 1/4 in.
18-8 Stainless

1/16 in. Diameter
‘3/8 in. Length
18-8 Stainless

#4-40 ,
Flat Head Hex Socket
Length 3/8 in. '
1316 Stainless

#0-80 |
Length 1/8 in.

~316 Stainless

440
Length 3/8 in.
316 Stainless

#2-56,
Length 1/4 in.
316 Stainless

1/4 in. O.D.

I.D. for #4 Screw
7/32 in. Length
18-8 Stainless

‘Single End
0 in. to 0.055 in.-
5/16 in. Diameter

6

| Qty | Part Number |

McMaster: 90145A312

McMaster: 92373A107
McMaster: 90585A202

McMaster: 92200AQ52
McMaster: 92185A108

McMaster: 92313A022

McMaster: 92320A034

McMaster: 845‘5A16

" Table B.5: Bill of Materials: Fasteners.
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| - Item B | Description [ Qty | Part Number |
’ » ) Lightwave ‘
NPRO Laser 1064 nm Yvavelength 1 Electronics: 120-03A
T ,1200 lines/mm | Edmund Optics:
Grating 1000 nm wavelength 1 | NT43-851

12.7mm square

7 in., Stainless Sgéel :

Optics Post 1/4-20 Thread

6 Newpoit: P-7

S v- 3 in., Stainless Steel = . -
OvpthsJPost 1/4-20 Thread 3‘ Newport: P-3

Optics>M0unt : | 2 in. Pedestal | | 2 New;v Focus: RS2P
Optiqs Mount | Clamping Fork : ‘3* ' ThQrLabs:‘ CF.125v
Optics Mount Sliding Base Clamp | 2 Newport: SB-TPS |

»Mirror | Silver Coated.’Mirror 2 | New Focus: 5103

Mirror Mount ‘C‘aneri Mount . 2 | New Focus:‘ 9809

" Riser Plate B 4in. x4in. x0.25in. | 3 | Newport: MRP4—O.’25

. Riser Plate | 4 in; x4in. x 0.5 in. 1 Newport: MRP4A_0.5>‘
:Riserb Plate |10 in. x 6 in. x.0.5 in. 1 Néw‘port:‘ 290;TP

- Riser Plate 10 in. x 6 in. x 0.5 in. 2 Newport:: 290-BP |

Position Sensitive Diode | One-Dimensional PSD .  1 | On-Trak: 1L10

-Quadrant Photodiode | Large Area Silicon | 1 | Pacific Sensor -
_ Detector, 3/8 in. Diam. - . :
Translation Stage - ‘ , 1 | Newport: 423 Series
90—deg Mount -1 | Newport: 360-90

Table B.6: Bill of Materials: Optics



Ap»pendix, C
'Electr‘ivvcélg

C.1 Instrumentvationl

: \ Instrumentation | Model Number

GPIB PCI Card Agilent 82350B
Oscilloscope Texktronix TDS5054B
.Function Generator Agilent 3320A

Digital Multimeter Agilent 34401A
Triple Output Power Supply | Agilent E3631

DC Power Supply HP 6038A

Digital Temperature Monitor | Omega 747

Universal Frequency Counter | HP 53132A

Dynamic Signal Analyzer HP 3562A

Table C.1: Experimental apparatus instrumenfation.
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C.2 Schematics

*- — !

o | 1
. - Lk
R R4 ,
VIN—__}—
200k
.

: .:Figure C.l: Schematvic:;Penduluml coil driver.
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Figure C.2: Schematic: Position sensitive diode.
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Figure C.3: Schematic: Quadrant photodiode, autocollimator.



Appendix D
Software

The software used for this proj‘_ec_t falls into two. categories:
1. Seftware to perform the double Taylor method for gravitational mass attraction.
2. Software to automate the five-wire pendulum and measuremerits.\‘

The software for the double Taylor method was written using Fortran 90. Early
versions utilized both MPI and OpenMP for parallel computing methods. The final
~version utilized only OpenMP‘ calls. ' The softwafe was primarily used to verify the
double Taylor method and to 1nvest1gate the contrlbutlon due to hlgher order terms'
; in the expans1on o , ‘

The software created for the five-wire pendulum operatien‘was written in python
and was designed to have a modular faehion. For each GPIB device used in the in-
strumentation setup‘as listed in Table C.1, a python mod'ule was created to perform
common GPIB commands to the instrument. The modules could then be used to .
operate‘each device. These building blocks were used to automate the measurement
procedure and data acquisition. Automated measurements could then be‘performedb
remotely or by using a time-based jobiSCheduler, allowing middle of the night mea-
surements to avoid disturbances due to human activity The software modﬁles ’are,
- available from the author and are released by the author under the GNU Public

License. The modules were designed to use the gplb-hnux package
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2008-11-09_HS1 to

2r550 “ - v?OQ8—l}—l4_H§_2f3 : :
| T T
D BAGE R P SRR, S PR H.Sl ,,,,,,
: S : : . : -
‘ B : . z | - 4-3-2
—12'540 ........ L e L P SR
N B : : f o f f 3
o ‘ HS2 : : : : :
|_|2-> ..... [ e T R e DIt EIPI IP IR IPIPI R
- 535. S : Co 51—8-3 .o1-6-11
5y s B : : : : -
U2 5330F - e P, e
g 2-530 | ; - gl
% . , : D - : - S
2.525 ...... .. ......... ...... .......... ...........
@ : ; : R S . SBES )
E HS3 | 1 %& 12 | A7_5_12
2.520_ ........ ...... : .......... .......... .......... ..... PRERS
: . ﬁ 4-11-12 :
2.515_ .......... ...... ....... ..... m ...........
' : : s 7-11-12 HS4
2

sl ; i i L 3
09/28 10/05 10/12 10/19 10/26 11/02 11/09 11/16
. GMT ] :

VConﬁ‘g. Frequency o ‘ # Measurements

. [Hz] x107° [Hz]
HS1 2547314 0.4 12
“HS2 2.538 104 0.7 22
HS3  2.525 208 2.3 23
HS4  2.510 835 3.7 . 42
1-11-12  2.521 920 1.0 44
L 4-11-12 - 2.519 232 2.8 155
7-11-12  2.514 887 05 31
- 1-89 2.532 219 2.3 - 88
7-2-12 ° 2.526 860 0.7 32
7-5-12  2.524 237 3.2 77
1-6-11 2.531 761 2.1 42
4-3-2 - 2.543 671 0.5 12

Table E.1: Measurement Data for Pendulum Calibration with Sphere Mount. The
measurements were performed with the sphere mount in the nominal center location
and with the 3/4inch trim mass spheres in:hole set 6.
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v 2009-03-11_2Part6_C9_HS2 to
‘ 2009—03—18_2Part6_C9_H1_6fll“

3.95 T T T T T T T
3. g4l . Wi
— HS2 : L
N b e ] B G e
: : : . : : o 1-6-1
E ) Do : : : -_— - Ll
3.93 ,,,,,,,,, 44444444 ......... ........ ......... ........ ........ .........
S : o = 7-2-12 '
g ................................... SRR TR — .................
R L01-11-12 - L Se—
53'92 ..... ........ ...... 7_5_12 .........
x L ST L em— e S L]
al b 4s11-12
’ 3.91_ ....... ........ ......... ........ ..... .........
‘ HS4 ............... ERNT P L
) 03/12 03/14. 03/16 03718 03720
S : GMT R v

‘Config Frequency o _ # Measurements
- [Hz] - x107° [Hz]

HS2  3.940 983 204 48
- HS4 3.901397  1.67 - 38
1-11-12  3.918 799 - 1.40 ‘ 33
4-11-12  3.914 960 1.10 - 45
1-8-9 3.932 824 1.13 28
7-2-12 3.925 108 1.76 37
7-5-12 - 3.921 516 206 - 41
1-6-11  3.931 587 - 238 . 34

Table E.2: Measurement Data for Pendulum Calibration with Measurement Object.
The preferred principal axis of inertia sphere number six was on the pendulum plat-
form in orientation' configuration nine. The measurements were performed with the -
sphere mount in the nominal center location and with the 3/4inch trim mass spheres
in hole set 6. » - ~
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2009-01-13_HS1_2Partl_Configl to
2009-01-22_HS1_2Partl_Config9

3.960 — .
3.955_ .... F JEETETEERRR ...... C6 ...... -C9 ........
: : Cc8
o c2 :
'—:3.950 ...... B ................. e
g - g
5 c4 : 7
33.945 ........ ............ i S
p] . L
¥
3. 940,T ........ Lo % ..... - ....... g
: Cc7
>-982/11 101}18; | 01/25
: o . GMT : |
- Config Frequency o # Measurements
[Hz] x107° [Hz] s
1 3.954. 899 3.08 : 68
2 3.953 273 2.82 30
3 3.940 309 236 49
4 3.947 950 1.39 18
5 3.948 968 1.71 - 50
6 3.956 053 -0.96 30
7 3.939 028 214 39
8 3.955 566 2.43 ' 30
9 3.956 146 2.54 62

.Table E.3: Measurement Data for 2-Part Sphere Number 1. The frequency mea-
- surements are for the combined pendulum platform with sphere fixture, 3/8inch.
calibration sphere in hole set 1, and the 3/4inch trim mass spheres in hole set 6.
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2009-04-29_2Part3_Configl to’
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3.927950°  1.36 | 33

- 3.942 009 i 29
3.934 799 1.29 24
3.935871 177 - 25

© 00~ O Ut = W N

Table E.4: Measurement Data for 2-Part Sphere Number 3. The frequency mea- -
surements are for the combined pendulum platform with sphere fixture, 3/8inch
calibration sphere in hole set 1, and the 3 /4inch trim mass Spheres in hole set 6.
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4 3.938 174 0.96 28
5 3.940 376 1.87 33
6 3.926 106 174 26
7 3.945 572 141 .25
8 - 3.943 858 1.34 ’ 30

Table E.5: Measurement Data for 2-Part Sphere Number,4. The frequency mea-
surements are for the combined pendulum platform with sphere fixture, 3/8inch
calibration sphere in hole set 1, and the 3/4inch trim mass spheres in hole set 6.
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) ‘2008—12—01;HSI_2PartSphér‘e6_Config1 to
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I T L T
e cs
o : . : ‘ : . R
3'950 ................ ....... L .................. CS._
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O
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_ Config Frequehcy o - # Measurements
{Hz] x 1075 [Hz]
1 3.954 257 2.58 L 36
2 3.947 062 4.64 . 237
.3 3.939 457 3.97 o150
4 3.946 357 1.81 26
5 3.947 610 3.18 80
6 39539200 = 3.34 51 .
7 - 3.932 671 3.83 , -85
8 3.951 166 1.65 46
9 3.949 759 1.73 25

Table E.6: Measurement Data for 2-Part Sphere Number 6. The frequency mea- '
surements are for the combined pendulum platform with sphere fixture, 3/8inch
calibration sphere in hole set 1, and the 3/4 inch trim mass spheres in hole set 6.
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2008-12-27_HS1 3PartSphere_Configl GMT to
2009-01-07_HS1 3PartSphere_Config9 GMT

3.975— . :
3-970_.....;.C42,.C3..‘.............H; ...... c 6C7 .......... ]
%3.965 ..... ........ R T ] ........... e
R _ _— ,
o : C5 - C5 a——
83'960 ..... ...... - ..... RN .......... - .C9., .‘
3] : Cc8 C8
I ' 5
8 3 . 955 ..... ............. I RERTRERS: .................................... .
 3_‘950-.§ ........... N . L ............... : ......... :
cl . : '
3.945 i : - i i '
12/28 : 01/04 - 01/11
S GMT 5 |
- Config Frequency o # Measurements
. [Hz] x 1075 [Hz]
1 3949831 ©  1.86 34
2 3.971 542 1.74 : 37
-3 3971397 237 - 33
4 3.958 421 - 2.74 ' 17
S 3.963 067 1.10 28
6 3.971 301 281 . 27
7 3.971 121 1.86 - 14
8 3.959 518 - 2.7 b7
-9 3.961 444 1.77 28

Table E.7: Measurement ‘Data for 3-Part Sphere Number 8. The frequency mea-
surements are for the combined pendulum platform with sphere fixture, 3/8inch
calibration sphere in hole set 1, and the 3/4inch trim mass spheres in hole set 6.
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